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Overview and Summary 
 
The Fourier Integral Transform and its various brethren play a major role in the scientific world. This 
monograph develops the analog and digital theory of these transforms and applies that theory to pulse-
amplitude-modulated (PAM) signals referred to as "pulse trains" --  signals formed from a single arbitrary 
pulse shape, x(t) = Σnynxpulse(t-nT1). Particular attention is paid to the spectral power density P(ω) of 
pulse trains which form a statistical ensemble. When PAM signals are passed through a "linear time-
invariant" circuit or other apparatus, that apparatus may be viewed as a "filter" and, due to the 
Convolution Theorem, the behavior of such a filter is most easily understood in the frequency domain. 
  
All calculations are done in line for the reader to see and perhaps critique. This is done to provide a clear 
tracing path for the repair of errors, to demonstrate unusual techniques, and hopefully to remove some of 
the mystery associated with Fourier Transform mathematics. With just a few exceptions, every equation 
appearing in this document is derived in this document.  
 
The reader is assumed to be familiar with calculus and complex integration.  
 
Equations which are quotes of earlier equations have their equation numbers in italics.  
 
A detailed summary of the material presented appears at the end of this document. Here we provide only 
a brief chapter-level summary.  
 
Chapter 1 (Sec 1-13) develops the basic theory of the Fourier Integral Transform and its Sine and Cosine 
cousins. This Chapter forms the underpinning of all subsequent Chapters. The Convolution Theorem 
receives special attention. The connection is made between the Laplace Transform and the "generalized" 
Fourier Transform applied to causal functions. Various "rules" are derived, and a connection is made 
between filter spectra and time-domain Green's Functions.  
 
Chapter 2 (Sec 14-19) examines the Fourier Integral Transform spectrum of a simple pulse train formed 
from a general pulse shape. Consideration of pulse trains of infinite length leads to a derivation of the 
Fourier Series Transform. The chapter concludes with a discussion of sample pulse trains formed from 
box and bi-phase pulses.  
 
Chapter 3 (Sec 20-27) deals with various digital forms of the Fourier Transform and their corresponding 
convolution theorems and applies these concepts to amplitude-modulated pulse trains (PAM signals) and 
to digital filters. Topics include image spectra, aliasing and Nyquist rate, group delay, FIR and IIR filters, 
poles, and impulse response. The first digital transform is called the Digital Fourier Transform which is 
an ω-domain version of the Z Transform whose variable is z = eiωΔt . The Z Transform and Discrete 
Fourier Transforms are then addressed for both periodic and aperiodic signals. A recurring example is a 
simple RC filter section.  
 
Chapter 4 (Sec 28-30) shows that symmetric FIR filters have linear phase and thus constant group delay. 
A specific brick wall digital filter is designed and then later used as an oversampling interpolation filter in 
the design of a D/A converter output section. This system is then simulated with a simple Maple program.  
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Chapter 5 (Sec 31) explores the subject of dispersion relations for the spectral function X(ω) and for 
other related functions treated as analytic functions of a complex variable.  
 
Chapter 6 (Sec 32-38) derives expressions for the energy and power, and the spectral energy and power 
densities of an amplitude-modulated pulse train. This work is carried out with a moderate amount of 
mathematical rigor. Correlation and autocorrelation are mentioned. The notion of a statistical pulse train 
is presented and the spectral power density of such pulse trains is established. These results are then 
applied to various uncorrelated standard line codes including NRZ, RZ and Manchester. Two examples of 
correlated pulse trains are then treated -- AMI and Change/Hold  -- and the latter is then used to obtain 
results for the NRZI line code.  
 
Appendix A discusses delta functions at a someone deeper and more practical level than is commonly 
found in texts and on the web. Delta function models are constructed and many mathematical identities 
are developed which find use in the main text.  
 
Appendix B  derives an obscure identity used in the Discrete Fourier Transform discussion of Section 27.  
 
Appendix C further develops Fourier Integral Transform theory beyond the treatment of the main text. 
Instead of using the notation f(t) and F(ω), here we use f(t) and f^(ω).  
 
Appendix D computes a certain sum needed in Section 35.  
 
Appendix E provides a table of all transform pairs appearing in this document and shows how they are 
related to each other.  
 
Appendix F explores the properties of infinite pulse trains which consist of a repeated subsequence of P 
elements. A square wave and an MLS sequence are examples.  
 
Appendix G treats random variables and provides a brief review of probability theory. Experiments 
considered include dice, a spinner, babies who grow up, and finally the experiment of an Apparatus that 
generates sequences used as pulse train amplitudes.  
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Chapter 1: The Fourier Integral Transform and Related Topics 
 
The purpose of this chapter is to demonstrate the use of certain mathematical tools associated with the 
Fourier Integral transform. Along the way simple examples are considered, with emphasis on the 
particular example of an isolated square pulse in the time domain. If we can make things work out for a 
square pulse, we can presumably go on to harder problems with the same tools.   
 
One normally analyzes a square-wave pulse train using a Fourier Series, since such a pulse train is a 
periodic function. In Chapter 2 below, we will make the connection between the conventional Fourier 
Series, and our Fourier Integral approach.  
 
1. The Fourier Integral and Sine/Cosine Transforms 
 
(a) Pulses and Pulse Trains, Periodic and Aperiodic 
 
Before starting, we need to define a few basic terms describing a function x(t) :  
 
x(t) is a "pulse" if x(t) decays to zero at both t = ± ∞. Normally we think of a pulse as having a finite 
extent, but it could be something like a Gaussian pulse with an infinite extent. Such pulses fall into the 
class of aperiodic (non-periodic) functions. Further restrictions on x(t) will be given below. 
 
x(t) is a "simple pulse train" if it is constructed as a sum of identical pulses each of which is shifted by the 
same constant amount T1 from the previous pulse. Simple pulse trains which are infinite in extent then 
fall into the class of periodic functions. If finite in extent, they are aperiodic.  
 
x(t) is a "general pulse train" if the pulses are allowed to have arbitrarily different amplitudes. We refer to 
this as an amplitude-modulated pulse train. If the pulse train is infinite and the amplitude-modulation is a 
repeating pattern (such as in a square wave), the pulse train is periodic. If the amplitudes are random or 
are, say, the decimals of π, the pulse train is aperiodic. We do not treat pulse trains composed of pulses 
having different shapes, such as would be encountered in frequency or phase shift keying, although the 
methods presented can be modified to account for such pulse trains.  
 
(b) The Fourier Integral Transform X(ω) 
 
Strictly speaking, the Fourier Integral Transform only applies to aperiodic functions due to the 
integrability condition given below, but if we ignore that condition and blindly apply the transform to a 
periodic function, the limit of the Fourier Integral Transform becomes the Fourier Series Transform, as 
will be demonstrated below.  
 
We now state the Fourier Integral transform. Let x(t) be some function of time. If we define X(ω) to be 
the "spectral components" or "spectrum" of x(t) according to (1.1), then the claim is that we can recover 
x(t) from these spectral components according to (1.2):  [ conventions are discussed in Section 5 ]  
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Fourier Integral Transform:    
 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform    (1.1) 

 

 x(t) = (1/2π) ∫
-∞

 ∞ dω X(ω) e+iωt  expansion = inverse transform   (1.2) 

 
Dimensions:  If Dim[x(t)] = V, then Dim[X(ω)] = V-sec. Here "V" could by anything or nothing. Often 
we shall regard x(t) as dimensionless, in which case V is "nothing", but V does suggest Volts as a typical 
unit for x(t) one might encounter in practice.  
 
In equivalent language, (1.2) represents an expansion of x(t) in terms of the spectral components X(ω). 
Equation (1.1) shows how these components are "projected out" of the function x(t). Sometimes this 
projection (1.1) is called "the transform" and then (1.2) is "the inverse transform" or "inversion formula" 
or "recovery formula" in the sense that x(t) is recovered from its spectral components. The variables t and 
ω are referred to as "conjugate variables". In this document, we shall think of t as time and ω as angular 
frequency, but they could be arbitrary conjugate variables. In the theory of waves, they might be position 
x and wavenumber k.  
 
The expansion (1.2) can be rewritten in terms of frequency f = ω/2π (so df = dω/2π) as follows: 
 

 X(f) =  ∫
-∞

 ∞ dt x(t) e-i2πft   projection = transform    (1.3) 

 

 x(t) =  ∫
-∞

 ∞ df X(f) e+i2πft   expansion = inverse transform   (1.4) 

 
where X(f) = X(ω) = X(2πf). This form gets rid of the (1/2π) in (1.2), but sticks us with 2π factors in the 
exponents. In general we shall stick with the ω form.  
 
There are restrictions on the function x(t) (or equivalently, on X(ω) going in the other direction). One 
restriction is that x(t) must be "piecewise continuous", which allows x(t) to have isolated places where it 
is discontinuous such as at the edges of our box pulse considered below. A second restriction is that the 
derivative of x(t) must also be piecewise continuous. If t is a discontinuous point (such as an edge of our 
box), one must interpret x(t) in (1.2) as limε→0 [ x(t+ε) + x(t-ε) ]/2. This is why one often sees the 
Heaviside step function θ(t) with the property θ(0) = 1/2,  as will be demonstrated later.  
 

    Fig 1.1 
 
The Heaviside step function is often denoted by u(t) or H(t), but we shall always use θ(t).  
 
A third condition is that x(t) must be "L1 integrable" which means this:  
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  ∫
-∞

 ∞ dt |x(t)| < ∞  // that is, this integral must be finite    (1.5) 

 
Notice that x(t) = sin(t) is not L1 integrable, although x(t) = sin(t) e-ε|t| is for any tiny ε > 0. Certainly 
any finite amplitude pulse of any shape having a finite temporal extent will be L1 integrable. If we 
consider the Fourier Transform of a periodic function in the ε limit sense just stated, then we may apply 
the Fourier Transform to periodic functions as well as aperiodic ones. This ε limit sense is directly 
associated with the theory of distributions, and that is why lots of delta functions appear in the analysis.  
 
Appendix C provides more detail on the Fourier Integral Transform. It seemed best to keep this material 
out of the main document flow, though it is quite important. See also Stakgold Vol. 2 Section 5.6.  
 
There are various names associated with this subject, including Fourier, Riemann, Lebesgue, Fubini, 
Parseval and Plancherel. A special class of functions for which Fourier Transforms are guaranteed to 
work are the Schwartz Functions. It is a story that goes on and on. For example, the Uncertainty Principle 
of quantum mechanics is directly associated with the Fourier Integral Transform where conjugate 
variables are x and p (position and momentum) or t and E= hω (time and energy). If one tries to localize 
x(t), X(ω) spreads out and vice versa. Force light to go through a pinhole and this positional confinement 
causes uncertainty in photon momentum and the light beam diffracts out from its original center line path 
through the hole.  
  
In what follows, we shall often interchange the order of two integrations in an expression, or the order of 
two sums, or of one sum and one integral. When functions are reasonable and integration or summation 
endpoints are finite, this is always an allowed procedure. When endpoints are infinite, there is some 
danger that the interchange gives wrong results. Essentially, a sum or integral with an infinite endpoint (or 
endpoints) is a limiting process, and one is then talking about interchanging the order of two limits. This 
is a rather technical subject having to do with so-called uniform convergence. A certain Moore-Osgood 
Theorem says that interchange is allowed as long as both limits exist and at least one of the limits is 
uniformly convergent. The situation is further complicated by what we above called the "ε limit sense" of 
distribution theory which in effect makes slightly non-convergent forms be convergent. Suffice it to say 
that all our order interchanges are justified providing the integrands like x(t) respect the conditions stated 
above.  
 
(c) The Fourier Sine and Cosine Transforms Xs(ω) and Xc(ω) 
 
Any function x(t) can be decomposed into even and odd parts under t ↔ -t,  
 
 x(t)  = xeven(t) + xodd(t)  = [x(t) + x(-t)]/2 + [x(t) - x(-t)]/2 .    (1.6) 
 
For xeven(t), only the cos(ωt) part of (1.1) contributes, and for xodd(t) only the sin(ωt) part. Thus,  
 

 Xeven(ω) = 2  ∫
0

 ∞ dt xeven(t) cos(ωt) 

 Xodd(ω)  = 2  ∫
0

 ∞ dt xodd(t) sin(ωt) 
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where the factor of 2 arises from reflecting the negative part of the integral to the positive side.  
 
Clearly Xeven(ω) is even in ω, and Xodd(ω) is odd in ω. Therefore, the inverse transformations can be 
restated in terms of cos and sin in this same manner, where now (1/2π) 2 = (1/π),  
 

 xeven(t) = (1/π)  ∫
0

 ∞ dω Xeven(ω) cos(ωt)  

 xodd(t)  = (1/π)  ∫
0

 ∞ dω Xodd(ω) sin(ωt) . 

 
Another view to take of these transforms is to regard x(t) as an arbitrary starting function which is defined 
only for t ≥ 0. One can then by fiat add a left side to the function, thereby making it either even or odd as 
desired. For example, if x(t) = exp(-t) for t > 0, one could either "evenize" or "oddize" the function in this 
manner 

    Fig 1.2 
 
Since the projections shown above only make use of data for t ≥ 0, this process is just something the user 
does mentally to explain why the following two transforms are valid for an arbitrary x(t) which is defined 
only for t ≥ 0. The inverse transforms if examined at t < 0 will produce left sides for x(t) having the 
appropriate symmetry as suggested in the above figure.  
 

 Xc(ω) = 2  ∫
0

 ∞ dt x(t) cos(ωt)   Fourier Cosine Transform 

 x(t) = (1/π) ∫
0

 ∞ dω Xc(ω) cos(ωt)        (1.7) 

 

 Xs(ω) = 2  ∫
0

 ∞ dt x(t) sin(ωt)   Fourier Sine Transform 

 x(t) = (1/π) ∫
0

 ∞ dω Xs(ω) sin(ωt)        (1.8) 

 
One can add an arbitrary factor A to the projection and 1/A to the inversion which will rescale the 
multiplicative constants, but the product of the constants must be (2/π).  
 
As noted, any x(t) defined over all t (-∞,∞) can be decomposed into its even and odd parts, and then one 
can use tables of Fourier Sine and Cosine Transforms to compute the complete Fourier Transform:   
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 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt  =  ∫
-∞

 ∞ dt [ xeven(t) + xodd(t) ] [cos(ωt) - i sin(ωt)] 

 

  =  ∫
-∞

 ∞ dt xeven(t) cos(ωt)  - i  ∫
-∞

 ∞ dt xodd(t) sin(ωt) 

 

  = 2  ∫
0

 ∞ dt xeven(t) cos(ωt)  - 2i   ∫
0

 ∞ dt xodd(t) sin(ωt) 

 
  = Xeven,c(ω)  -  i Xodd,s(ω) .        (1.9) 
   
Extensive tables of Fourier Sine and Cosine transforms appear in Erdélyi Vol. 4 (ET I).  
 
Example:   x(t) = e-at with Re(a) > 0 :  
 

 Xc(ω) = 2  ∫
0

 ∞ dt x(t) cos(ωt) =  2  ∫
0

 ∞  e-at cos(ωt)    =   2a/(ω2+a2)  FCT 

 x(t) = (1/π) ∫
0

 ∞ dω Xc(ω) cos(ωt)  = (2a/π)  ∫
0

 ∞ dω cos(ωt) /(ω2+a2)  =  e-at 

 

 XS(ω) = 2  ∫
0

 ∞ dt x(t) sin(ωt) =  2  ∫
0

 ∞  e-at sin(ωt)    =   2ω/(ω2+a2)  FST 

 x(t) = (1/π) ∫
0

 ∞ dω Xc(ω) sin(ωt)  = (2/π)  ∫
0

 ∞ dω sin(ωt) ω /(ω2+a2)  =  e-at 

 
 X(ω) = Xeven,c(ω)  -  i Xodd,s(ω)  =  2a/(ω2+a2) - i 2ω/(ω2+a2)   = 2/(a+iω) . 
 
Below we shall discuss how the Fourier Integral Transform becomes the Fourier Series Transform for 
periodic functions. In the same manner, the Fourier Sine Transform becomes the Fourier Sine Series 
Transform, and similarly for the Cosine transform, though we shall not explicitly discuss these cases.  
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2. Proof of the Fourier Integral Transform  
 
A simple proof of the Fourier Integral theorem follows from this fact, 
 

  ∫
-∞

 ∞ dx e±ikx = 2πδ(k)         (2.1) 

 
where δ(k) is a "distribution" or "symbolic function" known as the Dirac delta function. To "prove" (2.1), 
we first note that when k = 0, both sides are infinite, which seems promising. When k ≠ 0, the usual arm-
waving argument is that the oscillating phasor integrates to 0 over the long haul, or perhaps one claims 
that instead for the cos(kx) + isin(kx) real and imaginary parts. The "ε limit sense" mentioned above 
strengthens the arm-waving argument. For example, for k ≠ 0,  
 

 limitε→0 [ ∫
0

 ∞  cos(kx) e-εx dx ]    =  limitε→0 [ε / (ε2+k2) ]  = 0 .  k ≠ 0 

 
To establish the 2π in (2.1), integrate both sides from k = -a to k = a. The right side gives 2π since the area 
"under" δ(k) = 1. The LHS gives (here is our first order interchange),  
 

  ∫
-a

 a dk ∫
-∞

 ∞ dx e±ikx =  ∫
-∞

 ∞ dx ∫
-a

 a dk e±ikx =  ∫
-∞

 ∞ dx [ ∫
-a

 a dk cos(kx)] // sin(kx) is odd 

 

 =  ∫
-∞

 ∞ dx [ 2 sin(ax)/x ]  = 2 [ ∫
-∞

 ∞ dx sin(ax)/x ]  = 2 [ π ] = 2π . 

 
More serious derivations of (2.1) are presented in Appendix A (a) which the reader is encouraged to 
peruse. This Appendix also discusses the meaning of δ(0), a symbol we shall be using in Chapter 6.  
 One key property of the delta function is its "sifting property",  
 

  ∫
a

 b dx δ(x-y)f(x) = f(y)θ(b-y)θ(y-a)  = f(y)Θ(a≤y≤b)  a < b    (2.2) 

 
where θ(x) is the Heaviside Step Function noted above, and Θ(a≤y≤b) ≡  θ(b-y)θ(y-a) is a special notation 
explained in Appendix A (e) which makes certain manipulations easier to visualize. These functions 
cause the integral to vanish if y lies outside the range (a,b). If y coincides with endpoint b, say, then since 
θ(0) = 1/2, the right side becomes f(y)/2, as if the integral were picking up half the area of the delta 
function. A special case of the above equation is 
 

  ∫
-∞

 ∞ dx δ(x-y)f(x) = f(y) .          (2.3) 

 
Accepting (2.1), we can verify the Fourier Integral Transform in both directions. First (and here are more 
order interchanges!),  
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 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt  =  ∫
-∞

 ∞ dt {(1/2π) ∫
-∞

 ∞ dω' X(ω') e+iω't } e-iωt 

 

   = (1/2π)  ∫
-∞

 ∞ dω' X(ω')[ ∫
-∞

 ∞ dt e+i(ω'-ω)t]  = (1/2π)  ∫
-∞

 ∞ dω' X(ω') 2π δ(ω'-ω)  

 

    =  ∫
-∞

 ∞ dω' X(ω') δ(ω'-ω) = X(ω) .       

 
Going the other way is similar,  
 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt = (1/2π)  ∫
-∞

 ∞ dω { ∫
-∞

 ∞ dt' x(t') e-iωt' } e+iωt 

 

  = (1/2π)  ∫
-∞

 ∞ dt' x(t') [ ∫
-∞

 ∞ dω e+iω(t-t')] = (1/2π)  ∫
-∞

 ∞ dt' x(t') 2π δ(t-t') 

 

   =  ∫
-∞

 ∞ dt' x(t') δ(t-t') = x(t) . 

 
Have we "proved" the Fourier Transform by doing these verifications? Yes, but we have not proven in 
detail that the restrictions stated above on x(t) must be respected. In general, "proving" the viability of a 
transform lies in the realm of Sturm-Liouville theory, see following Comments. The main idea is that one 
must show that a set of basis functions is "complete" for an interval of interest, which means one must 
know the full "spectrum" of a certain operator L.  
 
Comments 
 
The set of functions eikx/ 2π  form a complete orthonormal set on the interval (-∞,∞) for functions f(x) 
of the restricted class described above (L1 integrable, etc).  Picking one of the signs, we can write (2.1) in 
these two ways, where * means complex conjugation  (perhaps think of x as t, and k as ω )  
 

  ∫
-∞

 ∞ dx [eikx/ 2π ] [eik'x/ 2π ]* =  δ(k-k')    // functions eikx/ 2π  are orthonormal 

 

  ∫
-∞

 ∞ dk [eikx/ 2π ] [eikx'/ 2π ]* =  δ(x-x')    // functions eikx/ 2π  are complete 

 
In general, every "self-adjoint" linear differential operator L on a given interval (a,b) defines a complete 
orthonormal set of functions on that interval and an associated transform on that interval. These functions 
are the normalized eigenfunctions of the eigenvalue equation Luλ = λuλ. The combination of L and (a,b) 
is said to define a "Sturm-Liouville problem".  When the endpoints are finite and L is "regular" at these 
endpoints, the spectrum for λ is discrete.  When the endpoints are "singular", as for example when one or 
both are infinite, the spectrum for λ is usually all continuous, but sometimes there is also a discrete 
component.  
 In the case of the Fourier Transform, which is our only transform family of interest, L = -d2/dx2, 
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 λ = k2, the interval is (-∞,∞), the eigenvalue equation is -d2uk/dx2  = k2uk and uk = eikx/ 2π .  
 There are many other "name-brand" transforms and each is associated with a particular L on a 
particular interval. An example is the Legendre Polynomial Transform on the interval (-1,1).  Another is 
the Fourier Series Transform on some (a,b).  Just as we expand x(t) on the e-iωt in (1.2) for interval 
 (-∞,∞), so also can we expand f(z) on Pl(z) for z in (-1,1), or f(x) on sin(nπx/L) for x in (0,L). In the latter 
two cases, the spectrum is indicated by l = 1,2,3...  or n = 1,2,3..  , while in the former ω = real, a 
continuous spectrum.  
 The subject has further extension to functions of more than one variable. For example, a function 
f(θ,φ) where θ,φ define points on a sphere may be expanded on the "spherical harmonics" Ylm(θ,φ) which 
are simultaneously eigenfunctions of two self-adjoint differential operators called L2 and Lz (angular 
momentum).  The interval for θ is (0,π) and for φ is (0,2π).  
 Stakgold Volume I discusses the spectra of differential operators in Chapter 4, and the theory of 
distributions (such as the delta function) in Chapter 1. Volume II then extends these ideas to multiple 
variables.  
 These Comments are only for the reader's possible interest and are not "used" anywhere below except 
where it is noted that the Fourier Transform functions e-iωt form a complete set on the interval (-∞.∞).  
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3. The Convolution Theorem and its Derivation 
 
Suppose three functions of t are related as follows (a convolution integral): 
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t') sometimes written a = b * c    (3.1) 

 
Letting t" = t - t' this can also be written 
 

 a(t) =  ∫
-∞

 ∞  dt" b(t")c(t-t") =  ∫
-∞

 ∞  dt' b(t')c(t-t')   =  ∫
-∞

 ∞  dt' c(t-t') b(t')   (3.2) 

 
which just shows that the integral is invariant under the change b ↔ c ( so a = b * c = c * b).  
 
Now assume that Fourier Integral expansions exist for a(t), b(t) and c(t) so we can write,  
 

 a(t) = (1/2π)  ∫
-∞

 ∞ dω A(ω) e+iωt  A(ω) =  ∫
-∞

 ∞ dt a(t) e-iωt 

 b(t) = (1/2π)  ∫
-∞

 ∞ dω B(ω) e+iωt  B(ω) =  ∫
-∞

 ∞ dt b(t) e-iωt 

 c(t) = (1/2π)  ∫
-∞

 ∞ dω C(ω) e+iωt  C(ω) =  ∫
-∞

 ∞ dt c(t) e-iωt   (3.3) 

 

Then apply the operation  ∫
-∞

 ∞ dt e-iωt to both sides of (3.1),  

  

  ∫
-∞

 ∞ dt e-iωt a(t) =  ∫
-∞

 ∞ dt e-iωt [ ∫
-∞

 ∞  dt' b(t-t')c(t')] 

or 

 A(ω) =  ∫
-∞

 ∞ dt e-iωt [ ∫
-∞

 ∞  dt' b(t-t')c(t')] .       (3.4) 

 
Next, these expressions follow from (3.3),  
 

 b(t-t') = (1/2π) ∫
-∞

 ∞ dω" B(ω") e+iω"(t-t') 

 c(t') = (1/2π) ∫
-∞

 ∞ dω' C(ω') e+iω't'        (3.5) 

 
and we can install them into (3.4) to get  (lots of steps here)  
 

 A(ω) =  ∫
-∞

 ∞ dt e-iωt [ ∫
-∞

 ∞  dt' b(t-t')c(t')] 

 

  =  ∫
-∞

 ∞ dt e-iωt  ∫
-∞

 ∞  dt'  { (1/2π) ∫
-∞

 ∞ dω" B(ω") e+iω"(t-t') } { (1/2π) ∫
-∞

 ∞ dω' C(ω') e+iω't'} 
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 = (1/2π)2  ∫
-∞

 ∞ dω" B(ω") ∫
-∞

 ∞ dω' C(ω')   ∫
-∞

 ∞ dt e-iωt  ∫
-∞

 ∞  dt'  e+iω"(t-t') e+iω't' 

 

 = (1/2π)2  ∫
-∞

 ∞ dω" B(ω") ∫
-∞

 ∞ dω' C(ω')   ∫
-∞

 ∞ dt  ∫
-∞

 ∞  dt'  ei(ω"-ω)t ei(ω'-ω")t' 

 

 = (1/2π)2  ∫
-∞

 ∞ dω" B(ω") ∫
-∞

 ∞ dω' C(ω') [  ∫
-∞

 ∞ dt ei(ω"-ω)t ] [  ∫
-∞

 ∞  dt'  ei(ω'-ω")t' ] 

 

 = (1/2π)2  ∫
-∞

 ∞ dω" B(ω") ∫
-∞

 ∞ dω' C(ω') [2π δ(ω"-ω)] [2πδ(ω'-ω")] 

 

 =   ∫
-∞

 ∞ dω" B(ω") δ(ω"-ω) [  ∫
-∞

 ∞ dω' C(ω') δ(ω'-ω") ]  =  ∫
-∞

 ∞ dω" B(ω") δ(ω"-ω) [ C(ω") ] 

 

 =  ∫
-∞

 ∞ dω" B(ω")C(ω") δ(ω"-ω) = B(ω) C(ω) .  

 
Thus, we have proven that 
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t')  ⇒ A(ω) = B(ω) C(ω) . 

 
Using the very same method, one can show that ⇐ is also true, and we end up with this very important 
theorem:  
 
The Convolution Theorem:  
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t')  ⇔ A(ω) = B(ω) C(ω)    (3.6) 

  
The significance of this result cannot be overstated. It says that, whereas the relationship between a,b,c 
might be complicated in the time domain as shown on the left, that complication goes away in the 
frequency domain on the right, where we have a simple product of functions A = BC. One says that the 
Fourier Integral Transform "diagonalizes" the convolution integral.  
 
Again using the same method of proof, one can obtain this corresponding theorem:  
 

 A(ω) = (1/2π)  ∫
-∞

 ∞ dω' B(ω-ω')C(ω') ⇔ a(t) = b(t) c(t)    (3.7) 

 
The extra (1/2π) factor arises because we started with (1.1) and (1.2) which are not symmetric.  
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Comments 
 
(1) Dimensions. In the convolution equation in (3.6), we shall think of a(t) and c(t) as having the same 
dimensional units we generically call V, because we are going to think of this equation as being a "filter" 
where c(t) is the input, a(t) is the output, and b(t) is the "filter kernel". In the examples of this document, 
we shall take a(t) and c(t) to be dimensionless, but in some application one might add a dimension of 
"volts" or "amperes" to the functions a(t) and c(t). Looking at (3.6), we find that if a(t) and c(t) are 
dimensionless or have the same dimensions, then b(t) must have dimensions of inverse time. Looking 
then at (1.1), we see that A(ω) and C(ω) have dimensions of time, whereas B(ω) is dimensionless. This 
then is how the dimensions work out in A(ω) = B(ω) C(ω).  
 
(2) Operators. In the language of linear operators, one can regard the functions a and c in (3.6) as vectors 
in an infinite dimensional vector space of functions, and then the left equation of (3.6) is a "matrix 
equation" which says a = bc where b is a linear operator. Specifically, it is an "integral operator". Operator 
b acts on vector c to produce vector a. One could think of (3.6) as a matrix equation at = Σt' btt'ct' 
where the continuous time variables act as indices. If we similarly write the right side of (3.6) as Aω = Σω' 
Bωω'Cω' then we find that the matrix Bωω' = δω,ω'Bω so matrix B is "diagonal", hence the term 
"diagonalization". We shall not pursue this language much, but make the reader aware of this 
interpretation. For more on this subject see Stakgold Chapter 3 on linear integral equations.  
  
(3) Groups. In the more general theory of Fourier Analysis on groups, the "projection" and "expansion" 
have this form, analogous to (1.1) and (1.2), where σ plays the role of ω and g the role of t,  
 

 Fσkk'  = ∫dg f(g) Dσ
kk'(g-1)     // projection,  transform 

 
 f(g) = Σσ  dσ Σk,k' Fσkk' Dσ

k'k(g)   =  Σσ  dσ tr[Fσ Dσ(g)]  // expansion,  inverse transform 
 
where in the last line tr means trace and F and D are regarded as square matrices. Here g refers to a set of 
group variables like Euler angles ψ,θ,φ for the rotation group. The functions Dσ

k'k(g) are the "matrix 
representations" of the group which have some dimension dσ. To say that a set of matrices forms a group 
representation means that, when multiplied, the matrices which represent group elements have the same 
multiplicative property had by the abstract group elements themselves,  
 
 Σk" Dσ(g1)kk" Dσ(g2)k"k' = Dσ(g3)kk' or Dσ(g1) Dσ(g2)  = Dσ(g3)        "group property" 
 
where g1g2 = g3. Quantity dg is the "invariant measure" on the group which is dψd(cosθ)dφ for the 
rotation group. In our simple Fourier Transform case, we have dg = dt, the group is the group of 
translations along the time axis, and the matrix representations have dimension dσ = 1 and are thus 1x1 
matrices, namely, e-iωt. The group property shown above is just e-ω1t e-ω2t = e-(ω1+ω2)t .  
 
In the general case, the convolution equation and its diagonalization are given by this generalized 
convolution theorem,  
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 a(g) = ∫dg1 b(g1-1g)c(g1)  ⇔ Aσ
kk' = Σk" Bσ

kk" Cσ
k"k' 

 
where the dg1 integral is over the entire parameter space of the group. The derivation of this theorem 
makes use of the group property shown above and the fact that dg3 = d(g1g2) = dg1 when the integration 
is over the full group space, just as in the simple case dt3 = d(t1+t2) = dt1. This is why dg is referred to as 
the "invariant" measure.  
 
In the case of one-dimensional representations, the convolution theorem says Aσ = BσCσ which is our 
A(ω) = B(ω)C(ω) with σ = ω. Despite the sum on k", the equation on the right is said to be "diagonalized" 
because it is true separately for each value of the label σ. If one writes Bσ

kk"  = δσ,σ" Bσk,σ"k", then the 
matrix Bσk,σ"k" is diagonal in the sense that it is mostly zero but has square matrices of size dσ x dσ on 
its diagonal ("block diagonal form"). For more on the subject of Fourier analysis on groups, see Hermann.  
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4. Applications of the Convolution Theorem 
 
This section is included because books often do not make the connection between the convolution 
theorem, Green's Functions, and the real world of everyday electronics. Often too this discussion is 
presented in the language of Laplace Transforms, so here we work in terms of the above Fourier 
Transform.  We shall state the general case, then do specific examples.  
 
(a) General case 
 
The real world seems to be described by linear differential equations. Here is a general form: 
  
 Lt u(t) = f(t)          (4.1) 
 
where Lt contains perhaps first and second order differential operators d/dt and d2/dt2. One would like to 
solve this equation for u, given some driving function f. It would be nice if one could find some operator 
that is the inverse of Lt and apply it to both sides of (4.1); the problem would then be solved. This is 
exactly what we are going to do. We first define a related equation as follows,  
 
 Lt g(t-t') = δ(t-t') .           (4.2) 
 
Here g(t-t') is the "impulse response" of the differential equation to the driving impulse term δ(t-t'). If we 
can solve (4.2) for g, then we know a solution to (4.1) for u(t) in terms of f and g, namely,  
 

 u(t) =  ∫
-∞

 ∞ dt' g(t-t') f(t') .          (4.3) 

 
In general one can add to this "particular" solution any solution of (4.1) with f(t) = 0. These extra 
homogeneous solutions can be tailored to meet required boundary conditions.  
 
Proof:  
 

 Lt u(t) = Lt { ∫
-∞

 ∞ dt' g(t-t') f(t')}  =  ∫
-∞

 ∞ dt' [Lt g(t-t')] f(t') =  ∫
-∞

 ∞ dt' [δ(t-t') ] f(t') = f(t) . 

 
The function g is called the "Green's Function", "propagator", or "kernel" of Lt. In (4.3) one is applying 

an integral operator G = ∫g to function f to get function u, so u = Gf. Looking at (4.1), this integral 

operator G must in some sense be the inverse of the differential operator Lt.  
 
Now we come to the main point: equation (4.3) is a convolution equation of the form (3.6)! Therefore, we 
can write (4.3) in the ω-domain as follows: 
 
 U(ω) = G(ω) F(ω) .          (4.4) 
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(b) A specific example: the RC filter section 
 
Consider a simple unloaded RC filter section with input voltage vi(t) and output voltage vo(t),  
 

   Fig 4.1 
 
Here is the differential equation, derived on the right above,  
 
 [ RC d/dt + 1] vo(t) = vi(t)  .         (4.5) 
 
Define the Green's Function g(t) by 
 
 [ RC d/dt + 1] g(t) = δ(t) .         (4.6) 
 
Then the solution to (4.5) is this: 
 

 vo(t) =  ∫
-∞

 ∞ dt' g(t-t') vi(t')  .        (4.7) 

 
This has the convolution form, so in the frequency domain we get 
 
 Vo(ω) = G(ω) Vi(ω).         (4.8) 
 
Sometimes this is called "filter theory", where G(ω) is the "transfer function" of the filter -- in our case a 
simple RC filter. If we expand g(t) as in (1.2) and δ(t) as in (2.1) then (4.6) says 
 

 [ RC d/dt + 1] (1/2π)  ∫
-∞

 ∞ dω G(ω) e+iωt  = (1/2π)  ∫
-∞

 ∞ dω e+iωt 

or 

  ∫
-∞

 ∞ dω G(ω) [ RC d/dt + 1] e+iωt  =  ∫
-∞

 ∞ dω e+iωt 

or 

  ∫
-∞

 ∞ dω G(ω) [ RC (iω) + 1] e+iωt  =  ∫
-∞

 ∞ dω e+iωt . 

 
Since the basis functions eiωt form a complete set on the interval (-∞,∞), we conclude that 
 
 G(ω) [ RC (iω) + 1] = 1 
or 
 G(ω) = 1/ [ 1 + iωRC]  
or 
 G(ω) = (1/iωC) / [(1/iωC) + R] = (-iXc)/ [ R +(- iXc)]   // XC = capacitive reactance = (ωC)-1 
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or 
 G(ω)  = Zc/(R+Zc) .     // ZC = -i XC 
 
In the frequency domain, we see G(ω) as the output of a simple voltage divider where one element has 
real impedance R and the other imaginary impedance Zc.  
 The above series of steps shows that in the frequency domain, one can replace d/dt by iω.  
 
Let τ ≡ RC and compute g(t) using (1.2),  
 

 g(t) = (1/2π)  ∫
-∞

 ∞ dω G(ω) e+iωt = (1/2π)  ∫
-∞

 ∞ dω e+iωt / [ 1 + iωτ]  

 

  = (1/2πiτ)  ∫
-∞

 ∞ dω e+iωt / [ ω - i/τ]  . 

 
Thinking of this as a contour integral, 

           Fig 4.2 
 
For t > 0 we can close in the upper half plane and pick up the residue of the pole sitting at ω = i/τ to get 
 
 g(t) = (1/2πiτ) 2πi ei(i/τ)t  = (1/τ) e-t/τ  = (1/RC) e-t/RC .  
 
For t < 0 we close instead in the lower half plane and pick up nothing, so the result is 0. Thus 
 
 g(t) = (1/RC) e-t/RC θ(t)  
 
where θ(t) is the Heaviside step function. To summarize, the transfer function G(ω) and its time-domain 
Green's Function g(t) are: 
 
 G(ω) = 1/( 1 + iωRC) = ZC/( R + ZC)        (4.9) 
 
 g(t) = (1/RC) e-(t/RC) θ(t) .        (4.10) 
 
If vi(t) = δ(t), then from (1.1) we have Vi(ω) = 1. In this case, Vo(ω) = G(ω) 1 and it must be that v0(t) = 
g(t). Thus, one always interprets g(t) as the impulse response of the filter. In this case, it is of course a 
simple decaying exponential. One then interprets θ(t) as saying that the impulse response only propagates 
forward in time, never backward ("causality").  
 
We conclude this section by writing out (4.7), which shows the time domain solution of our simple RC 
filter:  
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 vo(t) =  ∫
-∞

 ∞ dt' g(t-t') vi(t')   = (1/RC)  ∫
-∞

 ∞ dt' e-(t-t')/RC θ(t-t') vi(t') 

 

  =  (1/RC)  ∫
-∞

 t  dt' e-(t-t')/RC vi(t')  .       (4.11) 

 
This says that the present response of the system at time t is the cumulative result of the impulse 
responses at all past times, weighted by the value of the input function vi(t'). In other disciplines, the 
expression (1/RC)e-(t-t')/RC  = g(t-t') is called a propagator, since it describes exactly how the voltage 
amplitude vi(t') at some past time propagates into vo(t) at a some future time. This terminology is more 
useful when the integral operator has more than one variable. If dt' were replaced by dt' d3x', then an 
equation like (4.11) would perhaps describe how a wave propagates through 3D space. The result is then 
the sum of "scattering" at all t' in the past, and all positions x'  in space.  In our example, there is no spatial 
aspect, and the output voltage is just the input voltage scattered off the RC filter at all times in the past.  
 
(c) An even simpler example: Lt = (d/dt) 
 
In this section, we use the same equation numbers as in section b above, but add label c, as in (4.9)c.  
 
Let's start by considering L't = RC (d/dt). If RC is regarded as very large, RC >> 1, then we may take 
over the results (4.9) and (4.10) of the previous section as follows:  
 
 G'(ω) = 1/(iωRC)    for  L't = RC (d/dt) 
 
 g'(t) = (1/RC) θ(t)  . 
 
Then if we rescale so that Lt = (1/RC) L't = (d/dt), we just multiply the above results by RC to get 
 
 G(ω) = 1/(iω)    for  Lt = (d/dt).    (4.9)c 
 
 g(t) = θ(t)  . 
              (4.10)c 
Our starting differential equation is  
 
 [d/dt] vo(t) = vi(t) .          (4.5)c 
 
Define the Green's Function g(t) by 
 
 [d/dt] g(t) = δ(t)  .          (4.6)c 
 
Then the solution to (4.5)c is this: 
 

 vo(t) = ∫
-∞

 ∞ dt' g(t-t') vi(t') .        (4.7)c 

 



  Chapter 1: The Fourier Integral Transform 

  24 

This has the convolution form, so in the frequency domain we get 
 
 Vo(ω) = G(ω) Vi(ω)  = [ 1/(iω)]  Vi(ω)  .       (4.8)c 
 
Inserting g(t-t') = θ(t-t') from (4.10)c we get 
 

 vo(t) = ∫
-∞

 ∞ dt' g(t-t') vi(t')  =  ∫
-∞

 t  dt' vi(t')   .      (4.11)c 

 
We can differentiate this result to obtain the starting equation (4.5)c.  
 In this case, the time propagator is simply g(t-t') = θ(t - t'). The forward propagator amplitude is just 1 
regardless of how far t and t' are separated, and the propagator is 0 if it tries to send something backwards 
in time. In other words, causality is built into this propagator, and this was also the case for the RC filter 
(4.10). Physically, this example is an RC filter with a very long time constant, so basically all effects from 
the recent past propagate to the present with no attenuation. The capacitor is an integrator, just as one uses 
in an operational-amplifier-based analog computer design.  
 There are some subtleties involving the transform pair G(ω) = 1/(iω) and g(t) = θ(t) which have been 
swept under the rug in the last few paragraphs, but which are laid bare in Appendix C.  
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5. Fourier Integral Transform Conventions  
 
(a) Sign of Phase. The Fourier Transform (1.1) and (1.2) is also true if one replaces i with -i in both 
equations. This follows trivially from (2.1). EE people usually think of the fundamental "spectral 
component" time dependence as e+iωt and cos(ωt), so they want to see e+iωt in the expansion (1.2). 
Physics people who are often pondering plane waves described by exp[+i(k•r - ωt)] or cos(k•r - ωt) want 
to see e-iωt in the expansion (1.2). We have chosen to use the EE convention. If you want to use the 
physics convention, you must replace all our i by -i, and also Im[ ] by -Im[ ]. The physics convention is 
used, for example, by Stakgold Vol. II page 23 equation (5.32), a source we sometimes quote below.  
 
(b) j Versus i. EE texts favor j, physics texts always use i, which is of course the true historical symbol for 

-1. The reason is that EE people deal with lumped circuits containing currents labeled "i", whereas 
physicists deal with Maxwell's equations which contain current density "j". Each discipline chooses its 
symbol for -1 to minimize confusion with these other symbols. We shall use i.  
 
(c) Allocation of 2π. Our convention has been to put the factor of (1/2π) into the inversion formula (1.2), 
and to have no factor at all in the transform formula (1.1). We shall describe our motivations for doing 
this below.  
 Sometimes books put a 1/ 2π  factor in the transform (1.1), which causes the appearance of an 
identical 1/ 2π  factor in equation (1.2). This has the advantage of making the two equations completely 
symmetrical, and reminds us that there is complete symmetry between the conjugate variables t and ω. 
We have chosen not to do this in our presentation.  
 And of course the world would not be complete if some people did not prefer to put a 1/2π into the 
expansion equation (1.1), and have none of it in (1.2).  
 In general, the product of the two factors must be 1/2π. This is simply due to the 2π factor sitting on 
the right of (2.1). The main reason we choose to put the factor entirely in (1.2) is the following. Suppose 
we have a constant k≠1 on the right side of (1.1). Then the transform X(ω) so defined is scaled differently 
than our X(ω). If we rescale all terms in the ω-plane part of the convolution theorem (3.6), we must end 
up with an extra factor of k hanging around in the new version of the right side of (3.6). The other 
alternative is to add a k factor into the definition of the convolution integral (3.1). Neither is very nice, 
and there is a lot of history behind (3.6) as written. This is why we have done our 2π factors as shown 
above.  
 
(d) Comments. The conventions discussed above have no real physical significance, they just lead to 
different definitions of X(ω), so there are slight variations in (1.1) and (1.2). It is important to at least 
adopt some convention so one knows what one is talking about. A potential problem comes when one 
tries to look up something in a table or handbook; one may be off by a factor of 2π or 2π   if one is not 
clear on the conventions (attention people sending spacecraft to planets). The conventions we have 
adopted are consistent with 33.7,8 of the 1968 Schaum's Mathematical Handbook (now 4th Ed. 2012), 
and also with a 1967 printing of the Fourth Edition ITT Reference Data for Radio Engineers (now 9th Ed. 
2001). There must be something good about these two publications since they are both alive and well 
after half a century.  
 One other small convention detail is that, with our adopted phase convention, spectra X(ω) are 
normally analytic in the lower half ω plane and have poles in the upper half plane. Use of the other phase 
sign results in X(ω) which are analytic in the upper half ω plane and have poles in the lower half plane,  
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since in effect the entire ω plane is reflected in the real ω axis by a change of sign phase. This affects the 
form of dispersion relations, as we shall see in Chapter 5.  
 
6. The Generalized Fourier Integral Transform and the Laplace Transform X(s) 
 
In the discussion above, the Fourier Integral Transform spectrum X(ω) is defined for ω real and for x(t) 
being L1 integrable. One can show that the idea of the Fourier Transform can be extended to allow for 
x(t) which are not L1 integrable, provided one thinks of ω as a complex variable, and one thinks of the 
inversion integral contour of (1.2) as being a horizontal line in the complex ω plane which runs below any 
possible singularities of X(ω). In this extension of the Fourier Integral Transform, one must use single-
sided functions, and one usually deals with right-sided (causal) functions which vanish for t < 0. Such a 
function has the general form x(t) = θ(t)f(t). As an example, suppose  
 
 x(t) = θ(t)eαt .           (6.1) 
 
In this case, (1.1) says 
 

 X(ω) =  ∫
0

 ∞ dt eαt e-iωt =  ∫
0

 ∞ dt e(α-iω)t  =  
-1
α-iω  = 

-i
ω-(-iα)     (6.2)  

 
which has a pole at ω = -iα. The integral converges because we assume that ω has a sufficiently large 
negative imaginary part (perhaps -ic)  to make it converge. The inversion formula is then 
 

 x(t) = (1/2π)  ∫-ci-∞
 -ci+∞ dω X(ω) e+iωt   = (-i/2π)  ∫-ci-∞

 -ci+∞ dω  
e+iωt

ω-(-iα)     (6.3) 

 

        Fig 6.1 
  
where we position the contour at -ci which we assume lies below the pole. For t < 0, we close the contour 
downward, e+iωt decays, the great circle makes no contribution, and we recover that fact that x(t) = 0 for 
t < 0. For t > 0 we close upward and wrap the pole to get 
 
 x(t) =  (-i/2π)  2πi ei(-iα)t = eαt  
 
which of course is the desired result.  
 So our generalized Fourier Integral Transform may be stated as :  
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 X(ω) =  ∫
0

 ∞ dt x(t) e-iωt   projection = transform    (6.4) 

 

 x(t) = (1/2π)  ∫-ci-∞
 -ci+∞ dω X(ω) e+iωt  expansion = inverse transform   (6.5) 

     
where -ci lies below all singularities of X(ω).  
 
For a detailed discussion of this subject, see Stakgold Vol 2 pp 23-28. Since Stakgold uses the opposite 
phasor sign in his definition of the Fourier Transform, the ω plane contour for him is raised up so it runs 
above all poles of X(ω), which he calls x^(ω). Stakgold is interested in the Fourier Transform of a 
distribution, but in these pages he talks only about functions.  
 
If we now change variables from ω to s = iω, the above generalized Fourier transform becomes 
 

 X(s/i) =  ∫
0

 ∞ dt x(t) e-st         (6.6) 

 

 x(t) = (1/2πi)  ∫c-i∞
 c+i∞ ds X(s/i) e+is         (6.7) 

 
where the contour in the s-plane is as shown here, lying to the right of all singularities of X(s/i),  
 

          Fig 6.2 
 
We rotated the previous picture 90o counterclockwise to get the s-plane picture. If we now define 
 
 X(s)  ≡  L[x(t), s]  ≡  X(s/i)         (6.8) 
 
the transform becomes 
 

 X(s) =  ∫
0

 ∞ dt x(t) e-st         (6.9) 

 

 x(t) = (1/2πi)  ∫c-i∞
 c+i∞ ds X(s) e+is         (6.10) 
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which is the Laplace Transform and its inverse. The inversion contour runs to the right of all 
singularities in X(s).  
 
Here then is our conclusion: for the set of functions x(t) which are "causal", like our Green's Function 
propagator g(t) discussed above, and which therefore vanish at negative time, we can make an exact 
identification between the Laplace Transform X(s) and the generalized Fourier Transform X(ω) evaluated 
at ω = s/i. If we think of s = real, then we are "analytically continuing" the function X(ω) off its real ω 
axis. If we think of ω as real, then we are analytically continuing the Laplace Transform to imaginary s.  
 For non-causal functions x(t), the Fourier and Laplace Transforms do not have this simple 
relationship. Of course, when considering some general function x(t), we can easily make it causal "by 
fiat" by simply multiplying it by θ(t). In this case, our association holds all the time,  
 
 L [θ(t)x(t), s] = X(s/i)   X(ω) = L [θ(t)x(t), iω]  .     (6.11) 
 
This lets us make use of extensive tables of Laplace Transforms to look up X(ω) for given x(t), and lets us 
also understand that the "general properties" of Laplace Transforms also apply to the Fourier Transform, 
with the appropriate replacement s = iω. A very large table (~ 100 pages) of Laplace Transforms appears 
in the Bateman Manuscript Project Vol. 4 (see Erdelyi. et. al.).  
 
Example: The Laplace Transform of x(t) = eat is 1/(s-a), and a trivial "property" of the Laplace 
Transform is that kx(t) maps into k L [x(t),s] (the transform is linear). Thus, for our Green's Function of 
(4.10), using a = -1/RC,  
 
 L [ g(t), s] = L [ (1/RC) e-t/(RC) θ(t) , s] = (1/RC) [1 / (s + (1/RC))] = 1/(sRC + 1) .  (6.12) 
 
Thus we would conclude from (6.12) that 
 
 G(ω) = 1/(iωRC + 1)         (6.13) 
 
which agrees with (4.9) above.  
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7. Reflection Rules  
 
For general complex x(t), the definition (1.1) shows that  
 
 x(t) ↔ X(ω) ⇔ x(-t)  ↔ X(-ω)  // complex x(t)    (7.1) 
 
 x(t) ↔ X(ω) ⇔ x(-t)* ↔ X(ω)*  // complex x(t)    (7.2) 
 
This notation, used later, means that if x(t) has spectrum X(ω), then x(-t) has spectrum X(-ω) and 
similarly for the second line.  
 
Proofs:  
 

 Y(ω) =  ∫
-∞

 ∞ dt y(t) e-iωt  =  ∫
-∞

 ∞ dt x(-t) e-iωt  =   ∫
-∞

 ∞ dt x(t) e+iωt   = X(-ω) 

 

 Y(ω) =  ∫
-∞

 ∞ dt y(t) e-iωt   =  ∫
-∞

 ∞ dt x(-t)* e-iωt  =  [  ∫
-∞

 ∞ dt x(-t) e+iωt ]* 

  =  [  ∫
-∞

 ∞ dt x(t) e-iωt ]*   = X(ω)* 

 
If we do assume that x(t) is real (for example, a voltage or current in a real circuit), then from (1.1) the 
following fact follows at once (* means complex conjugation),  
 
 X(-ω) = [X(ω)]* .    // if x(t) is real    (7.3) 
 
Thus, one can think of the mysterious negative frequency spectral components of a real function x(t) as 
simply being defined in this manner in terms of the positive spectral components. Note that X(ω) is in 
general complex, even if x(t) is real, because exp(-iωt) is complex in (1.1).  
 
Similarly, (1.2) says that 
 
 x(-t) = [x(t)]*     // if X(ω) is real    (7.4) 
 
A function having the property f(-x) = f*(x) is called a Hermitian function. So we have shown that if 
x(t) is real, then X(ω) is Hermitian, and if X(ω) is real, then x(t) is Hermitian.  
 
If x(t) is real, then (7.3) implies 
 
   | X(-ω)|2  = | X(ω)|2         (7.5) 
 
and this is why, when dealing with spectral densities (as we shall below), many authors simply reflect the 
left half of the spectrum to the right side which doubles the right side. This must be done carefully if the 
spectrum includes a δ(ω) term:  the folded spectrum for such a term gets a factor of 1/2. In general we 
shall not use such folded spectra.  
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Two final rules are these: 
 
 x(t) = even in t  ⇔  X(ω) = even in ω     (7.6) 
 
 x(t) = real and even in t ⇔  X(ω) = real and even in ω    (7.7) 
 
Proof of both together:  
 

⇒  X(ω) = ∫
-∞

 ∞ dt x(t) e-iωt  = ∫
-∞

 ∞ dt x(t)  [cos(ωt) - isin(ωt)] = ∫
-∞

 ∞ dt x(t) cos(ωt)  = even in ω 

  and if in addition x(t) is real, then  ∫
-∞

 ∞ dt x(t) cos(ωt) is even in ω and real 

 

⇐  x(t) = (1/2π) ∫
-∞

 ∞ dω X(ω) e+iωt =  (1/2π) ∫
-∞

 ∞ dω X(ω) cos(ωt) = even in t 

  and if in addition X(ω) is real, then  (1/2π) ∫
-∞

 ∞ dω X(ω) cos(ωt)  is even in t and real 

 
8. Three simple examples of spectra 
 
(a) The spectrum of x(t) = 1 :  
 
In this example, x(t) is a constant over all time. Using (1.1) and (2.1), we find: 
 
 x(t) = 1  X(ω) = 2π δ(ω) .       (8.1) 
 
This comes as no surprise. For a DC signal, all the energy is concentrated at zero frequency. Of course 

x(t) = 1 does not respect the requirement  ∫
-∞

 ∞ dt |x(t)| < 0, which is why the spectrum is a distribution.  
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(b) The spectrum of x(t) = δ(t - t1) :  
 
Here x(t) is an infinitely narrow pulse of area 1, positioned at t = t1. Using (1.1), we get the following 
Fourier spectrum: 
 
 x(t) = δ(t - t1) X(ω) = e-iωt1  .       (8.2) 
 
The spectrum X(ω) has a constant magnitude 1 for all ω, out to infinite frequency. For such a pulse at t=0,  
 
 x(t) = δ(t)  X(ω) = 1        (8.3) 
 
and here the phase is constant. This result is (8.1) with ω ↔ t and the constant adjusted due to the 
asymmetry of the transform in our adopted convention. From Appendix C we quote this general rule 
 
 FT of x(t) = X(ω) ⇔     FT of  X(t) = 2πx(-ω)      (C.5) 
 
which, when applied to (8.3), gives (8.1) since δ(-ω) = δ(ω).  
 
(c) The spectrum of x(t) = θ(t) : 
 
The regular Fourier Integral Transform spectrum of the Heaviside step function θ(t) is the somewhat 
peculiar first line following, whereas the generalized Fourier Integral Transform gives the second line 
 

 x(t) = θ(t)  X(ω) =   " 
1
iω "  = 

1
iω+ε   =  

1
i  

1
ω - iε   

             (8.4) 

    X(ω) =  
1
iω     // generalized Fourier Integral Transform of (6.4) 

 
which we now explain. Like x(t) = 1, the  Heaviside θ(t) is also not in the class of functions for which the 

Fourier Transform is defined ( ∫
-∞

 ∞ dt |x(t)| < 0). We bring θ(t) into the acceptable class by replacing θ by 

θε where,  
 

 θε(t)  ≡  
⎩
⎨
⎧   e-εt   t > 0
 0        t < 0      for some very small ε > 0    .     (8.5) 

 
Then 
 

 Xε(ω) =  ∫
-∞

 ∞ dt θε(t) e-iωt  =  ∫
0

 ∞  dt e-εt e-iωt   =  
1

iω+ε  

 
and then X(ω) = limε→0 Xε(ω)  = (1/iω). But we really have to think of (1/iω) as meaning the limit of 

1
iω+ε . To see why, we now compute x(t) from the inversion formula,  
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 x(t) = (1/2π)  ∫
-∞

 ∞ dω 
1

iω+ε  e
+iωt  =  (1/2πi)  ∫

-∞

 ∞ dω 
1

ω- iε  e
+iωt  .  pole at ω = +iε 

 
For t < 0, close the ω contour down and get 0 since the great circle vanishes. For t > 0 close up and pick 
up the pole reside to get x(t) = e-εt. Thus we have recovered (8.5). For t = 0, we let the pole move to the 
real axis from above and deflect the contour down 
 

        Fig 8.1 
 
In the limit the contour is shrunk around the pole, the contributions from (-∞,0) and  (0,∞) cancel. These 
two terms are known as a principle value integral and we have 
 

 PV ∫
-∞

 ∞ dω (1/ω)  ≡ ∫-- ∞
-∞ dω (1/ω)  = 0 

 
since the left and right sides cancel (even range integral of an odd function). All that is left is the half turn 
around the pole which picks up half the residue at the pole (see Appendix C) so the result is then 
 

 x(0) =  (1/2πi)  ∫
-∞

 ∞ dω 
1

ω- iε    = (1/2πi)  (1/2) (2πi * 1)  = 1/2 

 
and we obtain the fact that θ(0) = 1/2 as was shown in Fig 1.1.  
 
If we apply our upcoming differentiation rule (11.1) [ which is to multiply by iω ] we find that 
 

 θ(t)  ↔  
1

iω+ε    =>  δ(t) = dθ(t)/dt   ↔  iω 
1

iω+ε  = 1 

 
which agrees with (8.3) above.  
  
Using the generalized Fourier Integral Transform stated in (6.4) and (6.5), we can regard X(ω) = 1/(iω) 
without all the ε business since the ω recovery contour in (6.5) runs below all singularities in the ω plane, 
which contour, when deformed up, gives Fig 8.1 and all the results quoted above. Applying our Laplace 
equivalence notion (6.8), we would predict from X(ω) = 1/(iω) that 
 

 L[θ(t), s] = X(s) = X(s/i) =  
1

i(s/i)   =  
1
s  

 
which is in agreement with any Laplace table.  
 The above examples are treated in more detail in Appendix C where the pf pseudofunction is 
introduced and the Pole Avoidance Rule is derived and then used.  
  



  Chapter 1: The Fourier Integral Transform 

  33 

9. Spectrum of an isolated square pulse 
 
Consider a positive square pulse of amplitude A and width τ which is centered at t=0. We can represent 
this using the Heaviside step function,  
 
 x(t) = A [ θ(t + τ/2) - θ(t - τ/2) ]    // =  A rect(t/τ)      
  
 

   Fig 9.1 
 
This "square" pulse is in general rectangular and we often refer to it as a box-shaped pulse.  
 
Apply (1.1) to get the spectrum of this pulse,  
 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt = A  ∫
-∞

 ∞ dt { [ θ(t + τ/2) - θ(t - τ/2) ]} e-iωt 

 

  = A [  ∫
-τ/2

 ∞   -  ∫
τ/2

 ∞  ] dt e-iωt = A ∫
-τ/2

 τ/2  dt e-iωt  = A  ∫
-τ/2

 τ/2 dt cos(ωt)   // sin = odd 

 

  = 2A  ∫
0

 τ/2 dt cos(ωt) = 2A sin(ωτ/2)/ω = (Aτ) [sin(ωτ/2)] / (ωτ/2) = (Aτ) sinc(ωτ/2)  

 
where we use the definition sinc(x) ≡ sin(x)/x (there are other definitions).  To summarize:  
     
 x(t) = A [ θ(t + τ/2) - θ(t - τ/2) ]         (9.1) 
      
 X(ω) = (Aτ) sinc(ωτ/2)  .         (9.2) 
  
Observations:  
 
(a) The spectrum is real and even in ω (see (7.7) for why), and it is a continuous function of ω. 
 
(b) Because sinc(-x) = sinc(x), X(ω) is an even function of ω.  
 
(c) X(ω) has the shape we are all familiar with.. The positive zeros are at x = (ωτ/2) = nπ for n=1,2,3... 
The first zero is at ω = 2π/τ (f = 1/τ). The central peak has height (Aτ). Here is a plot of y = sinc(x),  
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    Fig 9.2 
 
(d) Most of the spectral energy is in the central hump, and this represents positive frequency in the range 
f=0 to f=1/τ . 
 
(e) Quantity (Aτ) is the Area under the time-domain pulse. If the pulse is made twice as narrow (τ → τ/2) 
and twice as high (A→2A), this area stays constant, but the first zero of X(ω) moves out twice as far (as 
do all zeros), so the spectral width doubles.  
 
(f) In the limit τ → 0 with (Aτ) = (Area) = fixed, the square pulse x(t) approaches (Area) δ(t). Since 
sinc(x) → 1 as x→ 0, we find from (9.2) that X(ω) = (Area). This is in agreement with (8.3) above. In this 
limit, the height of the central ω hump stays fixed, and the zeros move out to infinity, as if a small flat 
portion of the central hump has expanded to fill all ω. A delta function has a "white" spectrum since X(ω) 
is a constant for all frequencies.  
 
(g) What about the limit τ → ∞ ? If we take this limit with A = fixed, we are converting our pulse to a 
constant DC signal x(t) = A. In this limit, as long as ω ≠ 0, the argument of the sinc function oscillates 
infinitely fast, giving a function that is zero when averaged over any finite interval. At ω = 0, something 
singular happens. The result comes out X(ω) = 2πA δ(ω), in accordance with (8.1) above. In terms of 
(9.1), in this limit the central hump gets higher and higher, and the zeros all move in toward ω = 0. As 
these zeros get closer together, the oscillation frequency of the tail of sinc(x) becomes infinite and washes 
out. To derive X(ω) = 2πA δ(ω) from (9.2), one can use (A.12) 
 

 limB→∞ δ4(k,B)   =  limB→∞  
sin(Bk)

 πk    = limB→∞  
B
π   sinc(Bk)   =   δ(k) ,   (A.12) 

 
which says, with k = ω and B = τ/2,  
  

limτ→∞  
τ

2π  sinc( 
τ
2 ω)   =   δ(ω) 

so 
 limτ→∞ [(Aτ) sinc(ωτ/2)] = A 2π δ(ω) .       (9.3) 
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(h) We can recover the box function from its spectral components using (1.2),  
 

 x(t) =  (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt  =  (1/2π)  ∫
-∞

 ∞ dω (Aτ) sinc(ωτ/2) e+iωt 

 

  =  (1/2π) (Aτ)  ∫
-∞

 ∞ dω(ωτ/2)-1 sin(ωτ/2) e+iωt   

 

  = (Aτ /2π)  ∫
-∞

 ∞ dω(ωτ/2)-1 (1/2i) [ eiωτ/2 - e-iωτ/2] e+iωt 

 

  = (Aτ /2π)(2/τ) (1/2i)  ∫
-∞

 ∞ dω (1/ω) [ eiω(t+τ/2) - eiω(t-τ/2)]  

 

   = (A /2πi)  [   ∫
-∞

 ∞ dω (1/ω) eiω(t+τ/2) -  ∫
-∞

 ∞ dω (1/ω) eiω(t-τ/2)]  ]  . 

 
Recall from the generalized Fourier Transform discussion of Section 6 that the ω contours run below the 
pole at ω = 0, so the pole is effectively located at ω = +iε. In either integral, if the exponent is positive, the 
exponential decays on the upper half great circle, so we close the contour up and pick up the pole residue. 
On the other hand, if the exponent is negative, we close down and pick up nothing. Thus 
 
       =  (A /2πi)  {  θ(t+τ/2) 2πi  - θ(t- τ/2)2πi }     
 
  =  A [ θ(t+τ/2) - θ(t- τ/2) ] 
 
which replicates (9.1). A bit more directly, we can compute x(t) on the sides of the box :  
 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω (Aτ) sinc(ωτ/2) e+iωt =  (1/2π)  ∫
-∞

 ∞ dω (Aτ) sinc(ωτ/2) cos(ωt) 

 
so that, using x = ωτ/2 so dx = (τ/2)dω,  
 

 x(±τ/2) =  (1/2π)  ∫
-∞

 ∞ dω (Aτ) sinc(ωτ/2) cos(±ωτ/2)   

 

        = (Aτ/2π)(τ/2)  ∫
-∞

 ∞  sinc(x) cos(x)   =  (Aτ/2π)(τ/2) π/2  = (A/2) , 

 
supporting the notion of Section 1 that x(t) = limε→0 [ x(t+ε) + x(t-ε) ]/2 at a point of discontinuity. 
Notice that the single integral has no pole at ω = 0 since sinc(0) = 1, so there is no issue of principle part 
integrals involved. The poles only appeared above when we split the integral into two integrals.  
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10. The Area Rules and Parseval's Formulas 
 
Setting ω = 0 in the Fourier Transform (1.1) and then t = 0 in (1.2), one gets 
 

 X(0) =  ∫
-∞

 ∞ dt x(t) = [area under x(t) ]       (10.1) 

 

 x(0) = (1/2π)  ∫
-∞

 ∞ dω X(ω)  = (1/2π) [area under X(ω) ]  .     (10.2) 

 
For the box pulse example above, we saw that X(0) = (Aτ) from (9.2). In light of (10.1), it is thus not a 
coincidence that this is the area under the time-domain box. 
 
From (10.2), we may conclude that the total area under the X(ω) curve (9.2) for our box pulse is 2πA, 
since x(0) = A, the height of our pulse. This is consistent with the fact that 
 

  ∫
-∞

 ∞ dx sinc(x) = π .         (10.3) 

 
Another area rule involves the power spectrum. First, it is easy using (1.1), (1.2) and (2.1) to prove this 
identity (one of Parseval's),  
 

  ∫
-∞

 ∞ dt a(t) b*(t) = (1/2π)  ∫
-∞

 ∞ dω A(ω) B*(ω) .       (10.4) 

 
Here * means complex conjugation and is needed to make things work so one gets δ(ω - ω') in the proof. 
Again, the 2π factor is missing if one uses df in place of dω.  
 In the case a = b = x, one gets the energy area rule which says 
 

  ∫
-∞

 ∞ dt |x(t)|2 = (1/2π)  ∫
-∞

 ∞ dω |X(ω)|2  =   ∫
-∞

 ∞ df |X(f)|2  .    (10.5) 

 
If x(t) is a voltage or current pulse, this says that the total energy (R = 1Ω) contained in the pulse is the 
same no matter which space is used to add it up. The pulse energy density is |x(t)|2 in the time domain, it 
is  |X(ω)|2/2π in the ω domain, and it is |X(f)|2 in the frequency domain.  
 
For our box pulse, the left side of (10.5) is A2τ. The right hand side gives the same result using (9.2) and 
the following fact,  
 

  ∫
-∞

 ∞ dx sinc2(x) = π .          (10.6) 

  
It is rather interesting that sinc(x) and sinc2(x) have the exact same area, see (10.3) and (10.6).  
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             Fig 10.1 
 
There are two other less-well-known Parseval's formulas which we just mention in passing,  
 

  ∫
-∞

 ∞ dt a(t) b(t) = (1/2π)  ∫
-∞

 ∞ dω A(ω) B(-ω)      (10.7) 

 

  ∫
-∞

 ∞ dt A(t) b(t) = ∫
-∞

 ∞ dω a(ω)B(ω) .       (10.8) 

 
These appear in Stakgold Vol. 2, page 24 and elsewhere. All these formulas can be proven in the same 
manner: just use (1.1), (1.2) and (2.1).  
 
11. Differentiation and Integration Rules with Examples 
 
Below (4.8) and at the end of Section 8 we saw examples of how d/dt → iω in ω-space. Here we state the 
differentiation rule both ways:  
 
 dx(t)/dt ↔ [iωX(ω)]          (11.1) 
 
 dX(ω)/dω ↔  [– itx(t) ]         (11.2)  
 
To derive the first rule in the general case we use (1.2) to expand x(t) so that 
 

 dx(t)/dt = d/dt [(1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt] = (1/2π)  ∫
-∞

 ∞ dω X(ω) d/dt (e+iωt) 

 

     =  (1/2π)  ∫
-∞

 ∞ dω X(ω)iω (e+iωt) = (1/2π)  ∫
-∞

 ∞ dω [ iω X(ω)] e+iωt . 

 
Equation (11.2) has a similar derivation with a minus sign due to the sign of the exponent in (1.1).  
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 So, (11.1) says that one gets the spectrum of the derivative of a function by multiplying the original 
function's spectrum by iω. For integration, one must therefore divide by iω.  
 
(a) Let's apply (11.1) to our square pulse function.  We have from (9.1) and (9.2),  
 
 x(t) = A [ θ(t + τ/2) - θ(t - τ/2) ] 
 
 X(ω) = (Aτ) sinc(ωτ/2) .  
 
Differentiating x(t), we get a pair of opposite signed delta functions separated by distance τ (derivatives of 
the box edges),  
 
 x1(t) ≡  dx(t)/dt = A [ δ(t + τ/2) - δ(t - τ/2) ] . 
 
According to (11.1), the spectrum must be, 
 
 X1(ω) =  iω (Aτ) sinc(ωτ/2)  = iω (Aτ)sin(ωτ/2)/ (ωτ/2)   = 2iA sin(ωτ/2)  . 
 
This agrees with direct calculation,  
 

 X1(ω)  =  ∫
-∞

 ∞ dt x1(t) e-iωt  =   ∫
-∞

 ∞ dt A [ δ(t + τ/2) - δ(t - τ/2) ] e-iωt  

 
      = A [eiωτ/2 -  e-iωτ/2] = 2iA sin(ωτ/2)  .  
 
As expected, there is no DC component since limω→0 X1(ω) = 0. In this drawing,  
 

    Fig 11.1 
 
we see x1(t) on the left in heavy black, and the spectrum X1(ω) is on the right. The red line and dot show 
that there is zero energy at DC, ω = 0. The green dot on the right at the first peak of X1(ω)/i corresponds 
to the green sine curve on the left, which we would expect to give a strong component for the double 
delta. To understand the sign of the green dot, recall that (1.9) for an odd function x1(t) states X1(ω) = -  i 
X1,s(ω) so that X1(ω)/i  = - X1,s(ω) = the negative of the Fourier Sine projection.  
 
(b) Now let's apply (11.2) to the following function (multiply box x(t) above by t )  
 
 x2(t) ≡ t x(t) = A t [ θ(t + τ/2) - θ(t - τ/2) ]. 
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This represents a doublet sawtooth pulse centered at t=0. According to (11.2) in the ← direction,  
 
 X2(ω) = i dX(ω)/dω  = i (Aτ)(τ/2) sinc'(ωτ/2)  = ( iAτ2/2) sinc'(ωτ/2) 
 
where sinc'(x) = cos(x)/x - sin(x)/x2. Again, X2(ω) has no DC component, since limx→0 sinc'(x) = 1/x - 
1/x = 0. This is an agreement with the fact that the sawtooth clearly has a zero integral and this integral 
according to (1.1) is just X(0). Here is a picture similar to that shown above,  
 

  
             Fig 11.2 
 
12. Time translation x(t) causes phase on X(ω).  
 
Assume that some x(t) has a spectrum X(ω),  
 
 x(t)  ↔ X(ω) 
 
Then it follows directly from (1.2) that: 
 
 x(t - t1) ↔ X(ω) e-iωt1  .        (12.1) 
 

We saw this happening in the special case of (8.2); here we see that the result is completely general. 
Translation of a signal in time causes the spectrum to gain the phase shown.  
 
According to (1.1), we have this analogous result ,  
 
 X(ω-ω1) ↔ x(t) e+iω1t        (12.2) 

 
13. Exponential Sum Rules 
 
For the first time in this document, sums appear. Everything above was integrals only.  
 
In (2.1) stated above, the delta function is written as an infinite integral of an exponential,  
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  ∫
-∞

 ∞ dx e±ikx = 2πδ(k) .          (2.1) 

 
 A similar result involves a summation of exponentials. For k in the range -π to π we claim that: 
 

 ∑
n = -∞

∞
  eink = 2πδ(k)   -π < k < π   .      (13.1) 

 
To "prove" this, we argue as we did for (2.1) that for k ≠ 0, the phasors "wash out" in the infinite sum and 
we get zero = zero. For k = 0, the summand is 1, so the result is infinite, and thus the result is proportional 
to δ(k). As we did above, we can prove that the factor of 2π is correct by integrating both sides over k 
from -a to +a. The right side gives 2π. On the left, do the dk integral exactly as done above (2.2) to get 
 

  ∫
-a

 a dk ∑
n = -∞

∞
  eink  = ∑

n = -∞

∞
   ∫

-a

 a dk eink  =  ∑
n = -∞

∞
   ∫

-a

 a dk cos(nk)  // sin(nk) is odd 

     = ∑
n = -∞

∞
   [2sin(na)/n ]  = 2a + 4 { ∑

n =1

∞
   [sin(na)/n ] } = 2a + 4 { 

π-a
2   } = 2π . 

 
In the last few steps, the negative part of the sum is reflected into a positive part since [2sin(na)/n] is even 
in n. The sum in curly brackets appears as 1.441.1 on p 46 of Gradshteyn-Ryzhik, 
 

 
 
This sum is restricted then to 0 < a < 2π, but since we had in mind a being some small positive number, 
this is not a problem, although it does provide a hint of what is to come below.  
 Since the right side of (13.1) is real, the equation is also valid with e-ink on the left.  
 
Now we want to generalize (13.1) for k in the range -∞ to +∞. The result is fairly obvious. Instead of just 
a delta function at k=0, we have delta function spikes at each k value for which the summand equals 1. 
Thus, spikes will be at k = 0, ± 2π, ± 4π, and so on,  
 

 ∑
n = -∞

∞
  eink  = ∑

m = -∞

∞
  2πδ(k - 2πm) -∞  < k < ∞   .      (13.2) 

 
Again, one can prove that the constant is 2π at each spike by integrating over dk from 2πm-a to 2πm+a, 
for small a. Generally speaking, the right side of (13.2) must have the form shown because the left side is 
periodic in k with period 2π, and (13.1) gives that result for -π < k < π .  
 Replacing n→-n shows that (13.2) is also valid with e-ink on the left side.  
 
The exponential sum rule (13.2) plays a critical role in the analysis of periodic pulse trains in Chapter 2 
below.  
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Equations (2.1) and (13.2) are more carefully derived in Appendix A. There it is shown that in each case 
the delta function is the limit of a certain sequence of functions which all have unit area and which, as the 
limit is taken, become more and more isolated to the neighborhood of the delta function argument. The 
Appendix presents the essence of the distribution theory of delta functions.  
 
One result derived in Appendix A (b) is a finite sum version of (13.2) [ see (A.29) and (A.30) ]  
 

 ∑
n = -N

N
   eink   = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }   ≡  2π δ5(k,N) .  -∞  < k < ∞  (13.3) 

 
In the limit N→∞, Appendix A shows how the right side of (13.3) approaches the right side of (13.2).  
 Replacing n→-n shows that (13.3) is also valid with e-ink on the left side.  
 
Poisson Sum Formula: Setting k = 2πt/α in (13.2) with e-ink gives ( where α is any real number) 
 

 ∑
n = -∞

∞
  e-in2πt/α  = ∑

m = -∞

∞
  δ(t/α - m)  = | α | ∑

m = -∞

∞
   δ(t - mα) .      (13.4) 

 

Applying  ∫
-∞

 ∞ dt x(t) to both sides and using (1.1) one finds that 

 

 ∑
n = -∞

∞
  X(2πn/α)  = | α | ∑

m = -∞

∞
  x(mα) .         (13.5) 

 
This fascinating result appears for example in Stakgold Vol I (1.23b) and is known as the Poisson Sum 
Formula. Sometimes people refer to the underlying equation (13.2) by this name.  
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Chapter 2: Pulse Trains and the Fourier Series Connection 
 
In this chapter we take an arbitrarily shaped pulse and superpose an infinite number of instances of that 
pulse spaced by a fixed time interval T1. This "pulse train" is then a periodic function of period T1. We 
continue with the Fourier Integral notions of Chapter 1 -- such as the spectral components X(ω) -- and we 
then make the connection with traditional Fourier Series and their coefficients. We show how the Fourier 
Integral spectrum becomes discrete for a periodic function, and we are able then to relate the Fourier 
Series coefficients to the spectral components Xpulse(ω) of the pulse used to generate the pulse train.  
 
In the background, and to serve as a vehicle for doing a few calculations, we address a particular problem. 
We consider the symmetric zero-DC-offset square-wave pulse train generated from two completely 
different methods, one involving adding a negative DC offset to a simple positive square wave pulse train, 
and the other using biphase pulses.  
 
Our main purpose here is to build tools that will be used in more complicated problems. The methods 
presented here form the basis for treating amplitude-modulated pulse trains made from pulses of arbitrary 
shape, including the "arbitrariness" of a pulse being statistically present or absent.  
 
14. The Spectrum of a Simple Pulse Train 
 
Recall that a simple pulse train is just a sequence of identical pulses of shape xpulse(t).  
 
(a) Infinite Length Simple Pulse Train 
 
We assume that xpulse(t) is some "reasonable" (non-pathological) function. The pulse train is given by,  
 

 x(t)  = ∑
n = -∞

∞
   xpulse(t - tn)  tn = nT1 .    pulse train (14.1) 

 
Let Xpulse(ω) be the spectrum of xpulse(t). This xpulse(t) does not really have to be a "pulse", but it is 
convenient to think of it as such. We imagine that xpulse(t) is a function that is somewhat localized in the 
region of t=0, and vanishes for very large positive and negative time. The half-width of the pulse can be 
larger than T1 as discussed below, so pulses can overlap. Thus, our xpulse(t) is not itself periodic, and we 
thus expect it to have a continuous spectrum.  
 
For example, from (9.2) we already know the spectrum of a single box pulse of height A and width τ 
centered at t=0:  
 
 Xpulse(ω) = (Aτ) sinc(ωτ/2)  .        (14.2) 
 
Now consider a second pulse which is a copy of our original pulse, but which is translated T1 units to the 
right in time.  From (12.1), we know the spectrum of this second pulse:  
 
 X(ω, second pulse) = Xpulse(ω) e-iωT1 . 
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Now construct an infinite periodic wave by superposing pulses at t = 0, ±T1, ±2T1, ... .  We get,  

 X(ω) = Xpulse(ω) ∑
n = -∞

∞
   eiωnT1         (14.3) 

According to our exponential sum rule (13.2) with k = ωT1, we can write the exponential sum in (14.3) as 
a sum of delta functions to get, 
 

 X(ω) = Xpulse(ω) ∑
m = -∞

∞
   2πδ(ωT1 - 2πm) .       (14.4) 

 
Defining ω1 ≡ 2π/T1 this becomes 
 

 X(ω) = (1/T1) Xpulse(ω) ∑
m = -∞

∞
   2πδ(ω - mω1) .      (14.5) 

 
which is a standard form. Moving Xpulse(ω) into the sum then gives 
 

 X(ω)  = ∑
m = -∞

∞
   (1/T1) Xpulse(ω) 2πδ(ω - mω1) 

         = ∑
m = -∞

∞
   (1/T1) Xpulse(mω1) 2πδ(ω - mω1) .      (14.6) 

 
Thus, we have a set of evenly spaced delta function spikes which occur at these frequencies: 
 
 ωm = mω1 m = 0,1,2,3......         (14.7) 
 
In general, one has,  
 
 f(ω) δ(ω - a)  =  f(a) δ(ω - a) . 
 
Both sides of this last equation are zero when ω ≠ a, and at ω = a, f(a) = f(ω).  
 
Because the quantity (1/T1)Xpulse(ω) occurs frequently in the following discussion, we define a more 
compact notation for it as follows: 
 
 c(ω) ≡  (1/T1)Xpulse(ω) .         (14.8) 
 
Thus, c(ω) is nothing more than our (continuous) pulse spectrum divided by the fundamental period T1. 
We can then rewrite (14.6) as follows: 
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 X(ω)  = ∑
m = -∞

∞
   c(ω)  2π δ(ω - mω1)  = ∑

m = -∞

∞
   c(ωm)  2π δ(ω - mω1) .    (14.9) 

 
As was just noted above, we can harmlessly replace ω with ωm = mω1 inside c(ω) in (14.8). This leads us 
to define a set of numbers as follows 
 
 cm  ≡  c(ωm ) = c(mω1) .         (14.10) 
 
These numbers are just the values that the function c(ω) takes at our delta spike frequencies. We arrive 
then at our final form for the spectrum of an infinite simple pulse train,  

 X(ω) = ∑
m = -∞

∞
  cm  2π δ(ω - mω1) .        (14.11) 

Now we are ready to summarize all these results:  

 Fourier Integral Transform of an Infinite Simple Pulse Train              (14.12) 
         
 1. Let xpulse(t) be any reasonable pulse. Construct a pulse train x(t) with spacing T1: 
 

  x(t)  = ∑
n = -∞

∞
  xpulse(t - nT1) .      (14.1) 

 By its construction, x(t) is periodic with period T1, which we can write formally as: 
 
   x(t + nT1) = x(t) .  n = any integer 
 
 If x(t) is a known periodic function of period T1, a candidate for xpulse(t) is x(t) over 
      any one period.  
 
 2. Define c(ω) to be the Fourier Integral transform of the pulse, scaled by 1/T1: 
 

  c(ω) ≡  (1/T1)Xpulse(ω) =  (1/T1)  ∫
-∞

 ∞  dt xpulse(t) e-iωt .  (14.8) and (1.1) 

  
 3. Then the Fourier Integral transform of the Pulse Train is as follows: 
 

  X(ω) = ∑
m = -∞

∞
   c(ω)  2π δ(ω - mω1)  = ∑

m = -∞

∞
   cm  2π δ(ω - mω1)  (14.9) 

 
 where cm  =  c(ωm ), ωm  = mω1, ω1 = 2π/T1.  
 
 4. These cm are the same cm which appear in the next section. That is, they the complex Fourier Series 
      coefficients.       
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Item 3 is our main result. It says that the Fourier Transform spectrum of an infinite sequence of pulses is a 
sum of equally-spaced delta function spikes whose coefficients are given by the continuous spectrum of 
the central pulse evaluated at the spike frequencies ω = mω1. The pulse spectrum c(ω) =  (1/T1)Xpulse(ω) 
is normally thought of as the "coefficient envelope", while the equally spaced delta function spikes are the 
"lines". In this sample symbolic drawing of a spectrum, the infinitely-high delta function spikes of the 
spectrum are represented by finite vertical red line segments whose heights are the coefficients cm. The 
red lines are the spectrum, and they track the envelope c(ω).  
 

         Fig 14.1 
 
 It may happen that certain cm vanish, meaning that such lines are not present.  
 
The item 3 sum includes the DC line m=0 having ω0 = 0. Unless c0 happens to vanish, the pulse train has 
a DC component. As noted in (10.1), Xpulse(0) is the area under xpulse(t). Only if this area is zero do we 
get c0 = c(0) =  (1/T1) Xpulse(0) = 0.  
 
Whereas the Fourier Transform spectrum of a single pulse (localized, non-periodic) is continuous in ω, 
that of an infinite sequence of pulses is entirely discrete and has no continuous portions. This conforms 
with the well-known fact that the spectrum of any periodic function is discrete. In fact, we have just 
proven this to be so. Any periodic signal has to repeat some pattern, and we just take that pattern to be our 
xpulse(t).  
 
Note on xpulse(t) 
 
In our summary box (14.12) above, we say that if x(t) is some known periodic function, one can take as a 
candidate for xpulse(t) the function x(t) restricted to any one period. In this case, the dt integration 
endpoints for the projection Xpulse(ω) only cover that selected period. If we select the period centered at 
t=0, then item 2 in the above summary box becomes perhaps more familiar: 

  c(ω) =  (1/T1)Xpulse(ω) =  (1/T1)  ∫
-T1/2

 T1/2

 dt x(t) e-iωt   .     (14.13) 

What is perhaps less obvious is that there are many different candidates for xpulse(t) that result in the 
same x(t) pulse train. These other choices for xpulse(t) are pulses which slop over into more than one 
period T1. When a pulse train is formed with such pulses, the pulses overlap.  
 
To see how this might work, think of a pulse which has a nice gaussian shape and goes about half way 
into each neighboring T1 interval. Draw some of these, then add them up to make the sum curve x(t). In 
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this case, for a candidate xpulse(t), one can use either the gaussian, which overlaps into several intervals, 
or one can use one interval's worth of the sum curve x(t) (shown as the darker curve) 
 

     Fig 14.2 
 
We have tried to keep our formulas completely general to allow for pulse trains formed from pulses 
which overlap into more than one period. The resulting spectrum is of course the same no matter which 
xpulse(t) is chosen. Later on in the power discussion we shall always regard xpulse(t) as meaning the 
shape of x(t) over T1, as indicated by the black curve above.  
 
To summarize, we can write c(ω) in two equivalent ways 

 c(ω) =   (1/T1) ∫
-T1/2

 T1/2

 dt x(t) e-iωt =  (1/T1) ∫
-∞

 ∞ dt xpulse(t) e-iωt  .    (14.14) 

  
If we evaluate (14.14) at the discrete spike frequencies ω = mω1, we get 
 

 cm =  (1/T1) ∫
-T1/2

 T1/2

 dt x(t) e-imω1t =  (1/T1) ∫
-∞

 ∞ dt xpulse(t) e-imω1t  .   (14.15) 

 
Now since e-imω1(t+T1)  = e-imω1t e-imω1T1  = e-imω1t e-im2π = e-imω1t,  function e-imω1t is periodic 
with period T1. Since x(t) in the first integral in (14.15) is also assumed periodic with period T1, the 
integration can be over any interval of width T1, so one usually takes this interval to be (0,T1).  Thus,  
 

 cm =  (1/T1)  ∫
0
 T1 dt x(t) e-imω1t =  (1/T1) ∫

-∞

 ∞ dt xpulse(t) e-imω1t     (14.16) 

 
(b) Finite Length Simple Pulse Train 
 
It is a simple matter to modify the above development for a finite length pulse train. We use a finite pulse 
train having pulses centered about time t = 0 as in (14.17), then (14.3) becomes (14.18) below :  
 

 x(t)  = ∑
n = -N

N
   xpulse(t - tn)  tn = nT1 ,    pulse train (14.17) 

 X(ω) = Xpulse(ω) ∑
n = -N

N
   eiωnT1  .       (14.18) 
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The sum is done using (13.3) to give 
 
  
 X(ω)  = Xpulse(ω) 2πδ5(ωT1,N) = c(ω) 2π T1δ5(ωT1,N)      (14.19) 
 
where δ5 is a delta function model described in Appendix A. This δ5 is periodic with period 2π and has 
identical peaks separated by 2π.  For large N we know that 
 

 δ5(k,N)  ≈ ∑
m = -∞

∞
  δ4(k - 2πm, N+1/2)   for large N    (A.18) 

 
where δ4(x,M) is another delta function model which peaks only near x=0. Thus for large N we can write 

 X(ω)  ≈  c(ω) ∑
m = -∞

∞
   2π T1δ4(ωT1 - 2πm, N+1/2) .      (14.20) 

 
To the extent that these δ4 peaks are very narrow (large N) we can move c(ω) inside the sum and evaluate 
it at ωT1 = 2πm (which means ω = mω1) to get 
 

 X(ω)  ≈  ∑
m = -∞

∞
   cm  2π T1δ4(ωT1 - 2πm, N+1/2) .      (14.21) 

 
In the limit N→ ∞, we get δ4(ωT1 - 2πm, N+1/2) → δ(ωT1 - 2πm)  and then 
 

 X(ω)  =  ∑
m = -∞

∞
   cm  2π T1 δ(ωT1 - 2πm)    =   ∑

m = -∞

∞
   cm  2π δ(ω - mω1) 

 
which agrees with (14.11).  
 
Example:  Suppose the pulse is our usual box of width T1 and height A. Then the pulse train is a constant 
DC level x(t) = A. We know that all the cm will vanish except c0 which is easy to evaluate 
 

 c0 =  (1/T1)  ∫
-∞

 ∞  dt xpulse(t)  = (1/T1) (AT1)  = A . 

 
The spectrum is then  
 

 X(ω) = ∑
m = -∞

∞
   cm  2π δ(ω - mω1)   = c02πδ(ω)  = A 2πδ(ω) 

 
which is a delta line at ω = 0 with factor 2πA, consistent with (8.1). 
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15. Connection with the traditional Fourier Series  
 
The pulse train spectrum (14.11) may be inserted into the Fourier transform expansion (1.2) to get 
 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt  =  (1/2π)  ∫
-∞

 ∞ dω [ ∑
m = -∞

∞
  cm  2π δ(ω - mω1)]  e+iωt 

  = ∑
m = -∞

∞
  cm    ∫

-∞

 ∞ dω  δ(ω - mω1)  e+iωt  =  ∑
m = -∞

∞
  cm e+imω1t      (15.1) 

 

  =  c0 + ∑
m = 1

∞
  [ cm e+imω1t + c-me-imω1t]  =  c0 + ∑

m = 1

∞
  [ cm e+imω1t + (cm e+imω1t)* ] 

 

  = c0 + ∑
m = 1

∞
  2 Re [cm e+imω1t]  = c0 + 2 Re [ ∑

m = 1

∞
  cm e+imω1t ] .   (15.2) 

 
In the above we have used the reflection rule (7.3) applied to cm ≡  (1/T1)Xpulse(ωm)  to find that  
c-m  = cm*,  and then c-me-imω1t  = (cm e+imω1t)*  . 
 
We know that the cm are in general complex numbers, so make the following two definitions: 
 
  am  ≡   2 Re [ cm ] = (2/T1) Re [ Xpulse(mω1) ] 
 
    - bm  ≡   2 Im [ cm ] = (2/T1) Im [ Xpulse(mω1) ]  .      (15.3) 
 
Since cm = (1/T1)Xpulse(mω1) it follows that 
 
 cm = (1/2) [ am - ibm ] .         (15.4) 
 
From (14.16) , assuming as we do from now on that x(t) is real, we get 
 

 cm  =  (1/T1)  ∫
0
 T1 dt x(t) e-imω1t        (15.5) 

      = ( 1/T1)  ∫
0
 T1 dt x(t) [ cos(mω1t) - i sin(mω1t)]   

so that 

 am  =  2 Re [ cm ] =  (2/T1)  ∫
0
 T1 dt x(t) cos(mω1t)      (15.6) 

 bm =  -2 Im [cm ]  =  (2/T1)  ∫
0
 T1 dt x(t) sin(mω1t) .     (15.7) 

 

In all the above integrals, we can replace  ∫
0
 T1 dt x(t)  by  ∫

-∞

 ∞ dt xpulse(t) as noted in (14.16).  
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Since x(t) is real, we know from (7.3) that X(-ω) = X(ω)*, so X(0) must be real. We also know this from 
the "area rule" (10.1) -- the area under a real function x(t) had better be real. Thus from (15.3) b0 = 0 and 
from (15.4) c0 = a0/2 so that 
 
 DC component of x(t) = c0 = (a0/2) = (1/T1) Xpulse(0)  .      (15.8) 
 
If we install expression (15.4) for cm into (15.2) we get this result: 
 

 x(t) = c0 + 2 Re [ ∑
m = 1

∞
  cm e+imω1t ]   =  a0/2  + ∑

m = 1

∞
   Re { [ am - ibm ] [ cos(mω1t) + i sin(mω1t)]  } 

      = a0/2  + ∑
m = 1

∞
   am cos(mω1t) + ∑

m = 1

∞
   bm sin(mω1t)  ω1 = 2π/T1   (15.9) 

 
This expansion, along with projections (15.6) and (15.7), is the traditional Fourier Series expansion of a 
periodic function of period T1. Thus, our seemingly uninteresting am and bm coefficients are exactly the 
standard Fourier Series coefficients. Moreover, the DC component of x(t) is equal to c0 = (a0/2).  
 
For completeness, we write down an alternate form of (15.9),  
 

 x(t) = a0/2  + ∑
m = 1

∞
  Am cos(mω1t + φm)       (15.10) 

  = a0/2  + ∑
m = 1

∞
  Am [cos(mω1t) cos(φm) -  sin(mω1t)sin(φm) ] 

  = a0/2  + ∑
m = 1

∞
  [Am cos(φm)] cos(mω1t)  +  ∑

m = 1

∞
  [-Am sin(φm)] sin(mω1t)  

Thus,  
   am = Am cos(φm)  Am =  am2 + bm2  
       -bm = Am sin(φm)  tan(φm) = -bm/am .      (15.11)  
 
So, here is a summary of the above efforts:  
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 Fourier Series Transform                  (15.12) 
         
 1. Let xpulse(t) be any reasonable pulse. Construct a pulse train x(t) with spacing T1: 

  x(t)  = ∑
n = -∞

∞
  xpulse(t - nT1)       (14.1) 

 By its construction, x(t) is periodic with period T1, which we can write formally as: 
 
  x(t + nT1) = x(t)  n = any integer 
 
 If x(t) is a known periodic function of period T1, a candidate for xpulse(t) is x(t) over any one period.  
 
 2. Define the Fourier Series coefficients by these projections = transforms  (cm =  [ am - ibm ]/2) 
 

  cm ≡ (1/T1)  ∫
-∞

 ∞  dt xpulse(t) e-imω1t    = (1/T1)  ∫
0
 T1  dt x(t) e-imω1t  (14.16) 

  am ≡  (2/T1)  ∫
-∞

 ∞ dt xpulse(t) cos(mω1t)    =  (2/T1)  ∫
0
 T1  dt x(t) cos(mω1t) (15.6)  

  bm ≡  (2/T1)  ∫
-∞

 ∞ dt xpulse(t) sin(mω1t)    = (2/T1)  ∫
0
 T1  dt x(t) sin(mω1t) (15.7)  

 
 3. The pulse train is then given by these expansions = inverse transforms:   (ω1 = 2π/T1) 
 

  x(t)  = ∑
m = -∞

∞
  cm e+imω1t   =    a0/2  + ∑

m = 1

∞
   am cos(mω1t)  + ∑

m = 1

∞
   bm sin(mω1t)     (15.9) 

 
    Note that am, bm, cm and x(t) all have the same dimensions, perhaps volts.  
 
 
Thus, we have derived the Fourier Series Transform from the Fourier Integral Transform. Recall that it is 
not necessary that xpulse(t) be totally contained within a width T1 We have infinite endpoints on the dt 
integrations above, and xpulse(t) is allowed to be any "reasonable" function, meaning the projection 
integrals must converge.  
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16. Fourier Series for a positive square wave pulse train  
 
From equation (9.2) the Fourier Integral spectrum of a positive box pulse of width τ and height A is 
 
 Xpulse(ω) = (Aτ) sinc(ωτ/2) .        (16.1) 
 
From (14.8) and (14.10) the complex Fourier Series coefficients are, using ω1 = 2π/T1,  
 
 cm = (1/T1) Xpulse(mω1) = (Aτ/T1) sinc(mπτ/T1) .      (16.2) 
 
Thus, from (15.3), we know the a and b coefficients as well:        
 
 am = (2Aτ/T1) sinc(mπτ/T1) m = 0,1,2,3...      (16.3) 
 bm = 0.     m = 0,1,2,3... 
 
We have here the Fourier Series coefficients for an infinite pulse train of positive pulses of amplitude A, 
width τ, and period T1, such that the time t=0 occurs in the middle of a positive pulse. If T1 = τ, the pulse 
train is a constant DC level A and cm = δm,0A, a case of minimal interest, so we assume T1 > τ :  
 

      Fig 16.1 
 
The reader is invited to compute the above Fourier Series coefficients in the standard manner, using the 
conventional formulas in the summary box (15.12). This is done also on page 32-33 of Bennett and 
Davey (who use T1 = T). Their result agrees with the above.  
 
17. More about positive square-wave pulse trains 
 
We can now summarize what we know about the positive square-wave pulse train with pulse height A, 
pulse width τ, pulse centered at t = 0, and period T1 (with ω1 = 2π/T1, see drawing above) :  
 
 xpulse(t) = A [ θ(t + τ/2) - θ(t - τ/2) ].   (9.1)    (17.1) 
 
 c(ω) = (1/T1) Xpulse(ω) = (Aτ/T1) sinc(ωτ/2)  (9.2) and (14.8)   (17.2)  

 x(t) = ∑
n = -∞

∞
   xpulse(t - nT1)     (14.12)    (17.3)  

 X(ω)  = ∑
m = -∞

∞
  c(ω) 2πδ(ω - mω1 ) = ∑

m = -∞

∞
  cm 2πδ(ω - mω1 ) (14.11)    (17.4) 

 cm = (1/T1) Xpulse(mω1) = (Aτ/T1) sinc(mπτ/T1)  (17.2) ω = mω1   (17.5)  
 c0 = (Aτ/T1)  = DC component .    (15.8) and (14.2)  (17.6) 
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For general τ, all spectral lines are present. Apart from an overall constant, the envelope function c(ω) is 
sinc(x), where x = ωτ/2. Here is a linear graph of |sinc(x)| = |sin(x)/x| (red) along with a graph of 1/x 
(blue). It is traditional to plot the absolute value of the spectrum since the power in each line is 
proportional to the square |cm|2  (shown later in (33.27)),  
 

  
  Figure 17.1: Plot of |sinc(x)| function along with 1/x.      Fig 17.1 
 
In the case of general pulse width τ (that is, for arbitrary pulse train duty cycle = τ/T1), one should 
imagine the evenly-spaced delta spikes superposed on the above picture. The spikes are located at xm = 
ωmτ/2 = mω1τ/2 = m(πτ/T1),  for m = 1,2,3... The spacing between the spikes is dx = (τ/T1)π. Thus, the 
number of spikes per hump is (T1/τ) since each hump is π wide. At low duty cycle, the spacing is small, 
and there are many lines for each hump of the |sinc(x)| curve. Here is a rough plot for an ~8% duty cycle, 
(T1/τ) = 16: 
 

  
  Figure 17.2. Same |sinc(x)| function with delta spike "lines". Height of each line  Fig 17.2 
  is relative magnitude of the cm coefficient. Plot is for τ = T1/16, duty cycle about 8% . 
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We shall now examine some special cases as application of what has so far been established.   
 
(a) If τ = T1/2 (50% duty cycle) we get a symmetric positive square wave pulse train,  
 

         Fig 17.3 
 
and (17.5) reduces to 
 
 cm = (A/2) sinc(mπ/2).         (17.7) 
 
The DC component (the m=0 line) is c0 = (A/2), which is what we expect. All the other even lines vanish 
due to the sinc form. For m = odd integers, we know that 
 
 sin(mπ/2) = (-1)(1-m)/2  = (i)1-m  =  real, since m odd     (17.8)  
  
We summarize these facts for our symmetric pulse train with t=0 centered on a positive pulse: 
 
 cm = (A/π) (i)1-m (1/m) m = odd        (17.9) 
 cm  = 0   m = even, m ≠ 0      
 c0 = (A/2) 
 
( If we were to shift the square wave down A/2, the cm would be the same except c0 = 0. )  
 
For Fig 17.3, if A = 2 we get 
 
 c1 = (2/π) = 0.64  c3  = - (1/3)(2/π) = - 0.21      c5 = (1/5)(2/π) = 0.13 . 
 
In terms of Figure 17.1, the spacing between the spike positions is π/2. Thus, all the m=even spikes occur 
exactly at the zeros of the sinc(x) function, that is why they all vanish. The m=odd spikes occur centered 
between these zeros, very close to the peaks of the humps. The 1/m drop-off of the Fourier coefficients 
seen in (17.9) is reflected in our plot of 1/x in the picture. The 1/x curve intersects the odd spikes at the cm 
coefficient values which are dropping off as 1/m (apart from overall constant). This plot uses A = 2 :  
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           Fig 17.4 
 
Since all cm in (17.9) are real, we know that bn = 0 so there are only Fourier Series cosine contributions to 
x(t). This is pretty clear looking at the time domain waveform shown in Fig 17.3 which is even in t.  
 
The pulse train we have constructed above has t=0 occurring in the middle of a positive pulse. If we were 
to shift our entire pulse train to the left by τ/2,  
 

       Fig 17.5 
 
so that falling pulse edge lines up with t=0, we would acquire an overall factor eiωτ/2 according to (12.1) 
which should then be added as a factor to (17.4). At the lines ω = mω1 this factor becomes  
e+imω1τ/2 =  e+im(2π/T1)(T1/4)  = eimπ/2 = (i)m acting on the cm coefficients. This cancels the phase 
shown in (17.9) leaving only a constant i.  
 
So, here are the results for the same pulse train with t=0 occurring at a falling edge: 
 
 cm = i (A/π) (1/m)   m = odd        (17.10) 
 cm  = 0   m = even, m ≠ 0 
 c0 = (A/2) 

 
Since all the odd-m cm are now imaginary, we know that the corresponding am vanish, and only Fourier 
sines contribute to the above, as one would expect, since x(t) is now an odd function of t. The magnitudes 
of the cm are the same for the original pulse train and the shifted pulse train, so the spectral energy 
distribution is unaffected by a time shift of the pulse train.  
 
(b) If τ = T1, we get from (17.5) that cm = Asinc(mπ), so now all lines vanish except the line at m=0, 
which has a coefficient A. This is again reasonable, since such a pulse train is just a constant DC function 
x(t) = A. In terms of Figure 17.1, the zeros spacing is now π, and all the delta spikes align with zeros of 
the sinc function, except the DC line spike.  
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(c) If τ > T1, the theory still applies, but the waveforms are a bit strange looking since they overlap. As τ 
is continuously increased, the amount of overlap builds up, and the DC coefficient continues to increase, 
as shown in (17.6). The black waveform below shows x(t) in the case where T1/τ = 3/4. The contributing 
pulses are drawn alternating red and blue and slightly displaced to make them more visible. 
 

       Fig 17.6  
 
(d) If τ → 0, but Aτ = area is held fixed, we have xpulse(t) → Aτ δ(t). For area Aτ = 1, xpulse(t) = δ(t) 
and in this case xpulse is exactly the first delta function model considered in Appendix A (a). To control 
dimensions properly, we instead set area Aτ = T1 so that xpulse(t) = T1δ(t) = δ(t/T1) which is 
dimensionless. We then find from (1.1) that Xpulse(ω) = T1, from (17.2) that c(ω) = 1, and from (17.4) 
the spectrum shown below,  
 
 Pulse   Pulse Train 

 xpulse(t) = T1δ(t)  x(t) = ∑
n = -∞

∞
  T1δ(t - nT1)   

 Xpulse(ω) = T1  X(ω)  =  ∑
m = -∞

∞
  2πδ(ω - mω1)  .      (17.11) 

   
Thus, in the spectrum of a sequence of time-domain delta functions, all "lines" are present and have the 
same coefficient 2π. This function is often used as a sampling function in A/D conversion analysis. 
Notice that here, even though the time-domain pulse is a delta function, it's spectrum is still continuous -- 
being a constant T1. The infinite pulse train spectrum is discrete, as always. We shall have more to say 
later on the implications of (17.11).  
 
(e) We started with a time-domain pulse centered at t = 0. As noted earlier, if this is not the case, 
Xpulse(ω) picks up the phase exp(-iωa) where a is the new time origin of the pulse. Looking at (15.5), we 
see that as x(t) → x(t-a), cm → e-imω1a cm so the phasor cm simply rotates in the complex plane. This does 
not affect any of our qualitative conclusions above, such as lines disappearing in certain cases. Also, the 
DC coefficients are unaffected since this exp(-iωa) = 1 at ω = 0. As one slides the pulse train by varying 
point a, the mixture of real and imaginary part of the cm varies. This corresponds to amplitude moving 
between the sine and cosine terms of the Fourier series. The energy/power in spectral lines is unaffected 
since |cm|2 does not change.  
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18. Non-positive pulse trains 
 
This is pretty much a non-issue. We can take any pulse train described by coefficients cm and superpose a 
constant DC level of say - B units. This corresponds to Δc0 = -B. Thus, if we choose B = -A/2, we can 
cancel out the DC level in our pulse trains of (17.9) or (17.10).  
 
Here are the cm for a pulse train with no DC offset, 50% duty cycle, peak-to-peak amplitude A,  and with 
falling edge aligned on t=0, taken from (17.10) with cancellation of the DC term :   
 
 cm = i (A/π) (1/m)   m = odd       (18.1) 
 cm  = 0    m = even 
 

           Fig 18.1 
 
19. Biphase pulse and pulse train  
 
Define a biphase pulse as being centered at t=0. The left pulse has width τ and amplitude A/2, the right 
pulse has width τ and amplitude -A/2, so the peak-to-peak amplitude is A, and a negative going edge 
aligns with t=0.  

             Fig 19.1 
 
We can analyze this as the superposition of a positive and negative pulse of the square type studied above, 
but each pulse has amplitude A/2 instead of A. Also, the positive square pulse is time- shifted to the left 
by τ/2 and the negative pulse is shifted to the right by τ/2, so we pick up as corresponding spectral (12.1) 
"shift phase" on each contributing pulse. The result is: 
 
 xpulse(t) = SquarePulse(A/2, t+τ/2) - SquarePulse(A/2, t - τ/2)    (19.1) 
 
 Xpulse(ω) = (Aτ/2) sinc(ωτ/2) [ e+iωτ/2 - e-iωτ/2]  

   

     =  (Aτ) sinc(ωτ/2) [i sin(ωτ/2) ]  =  (Aτ) 
sin(ωτ/2)

(ωτ/2)   [i sin(ωτ/2) ]  = (2iA/ω) sin2(ωτ/2) 

 
    = (iAτ) sin2(x)/x x = ωτ/2  .       (19.2) 
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This is the same as our envelope (9.2) for the positive pulse train (with pulse centered at t=0), except for 
the extra factor [isin(ωτ/2)]. Because of this extra factor, the coefficient envelope here is quite different 
from that for the square pulse. As ω → 0, the envelope function approaches zero -- there is no longer a 
central hump. Here is a normalized plot comparing the box spectrum (9.2) [red] to the biphase pulse 
spectrum (19.2) [black], both in absolute value : 
 

 
 
  Figure 19.2. Same |sinc(x)| and 1/x function, with biphase sin2(x)/x plot added.   Fig 19.2 
 
Our biphase pulse train spectrum is given by (17.4) and a new version of (17.5),  

 X(ω)  =  ∑
m = -∞

∞
  cm  2πδ(ω - mω1 )        (17.4)  

 
 cm = (1/T1) Xpulse(mω1)= (iAτ/T1) sinc(mπτ/T1) sin(mπτ/T1) 
 
   = (iA/mπ)  sin2(mπτ/T1)  .       (19.3)  
 
Notice that c0 = 0 so that all biphase pulse trains have zero DC offset.  
 
Now select the special case τ = T1/2 to construct a square wave with zero DC component,  
 

           Fig 19.3 
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The expression (19.3) reduces to: 
 
 cm = (iA/mπ) sin2(mπ/2) .         (19.4) 
 
As before, the even lines all vanish. For the odd m lines, the phase factor in (17.8) is now squared, so it is 
always 1. Thus, we summarize our results for a (τ = T1/2) biphase pulse train: 
 
 cm = (iA/πm)  m = odd    

 cm  = 0   m = even       (19.5) 
 
This result agrees exactly with (18.1) which was obtained by a different process involving three steps: (1) 
treat a positive symmetric square wave with positive pulse centered at t=0; (2) shift it so that negative 
going edge aligns with t=0, thus changing the phase factor; (3) add a DC term to cancel the DC offset.  
 
One might wonder how such different spectra envelopes (black and red in Fig 19.1) can yield exactly the 
same cm coefficients for m = 1,2,3... in the case τ = T1/2. The reason is easily understood. When τ = T1/2, 
the delta spikes in Figure 19.1 are positioned at x = mπ/2, and at these points the two curves have the 
same values.  
 
Here is a (semi) logarithmic view Fig 19.2. Of course log(0) = -∞, so the downward spikes of both the red 
and black curves really go down infinitely far, but get truncated in the plotting calculation mesh. 
Spectrum analyzers often allow for such a logarithmic vertical scale. 
 

 
   Figure 19.4. Logarithmic version of Figure 19.2.     Fig 19.4 
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Chapter 3: Sampled Signals and Digital Transforms 
 
In Sections 20-26, we shall used symbols ∆t, T1, tn, and ω1 frequently. We use whichever symbol seems 
most convenient at the moment. ∆t is the time spacing between samples of an analog signal. We define T1 
= ∆t to make a connection with Chapter 2 where T1 was the spacing between pulses superposed to make a 
pulse train. As before, ω1 = 2π/T1 . Symbol tn = n ∆t represents the particular times we choose to examine 
some signal. So: 
  
 T1 = ∆t  ω1 = 2π/T1 = 2π/∆t  tn =  n ∆t = n T1  
 
 
20. Sampled Signals and their Image Spectra 
 
As a specific application of our simple pulse train results boxed in (14.12) we consider the case where 
pulse xpulse(t) is a delta function, so we have a pulse train x(t) which is an infinite sequence of these 
delta functions spaced by time T1. This time we let T1 be the amplitude of each delta function, and as 
usual, we use ω1 = 2π/T1.  The basic equations for this situation are :  
 
 xpulse(t) = T1 δ(t) =  δ(t/T1)  // dimensionless   
     
 Xpulse(ω) = T1   (8.3)   
 
 c(ω) = 1    (14.12) item 2  

 d(t) = ∑
n = -∞

∞
   T1 δ(t - nT1)  (14.12) item 1      (20.1)  

 D(ω)  =  ∑
m = -∞

∞
  2πδ(ω - mω1)  (14.12) item 3      (20.2)  

 
where we have renamed our pulse train of delta functions and its spectrum to be d(t) and D(ω), in order to 
free up x(t) and X(ω) for new meanings.  
 
If we now multiply the delta function sequence d(t) times some reasonable continuous signal y(t), the 
result is a set of delta spikes which are amplitude modulated by the values that y(t) takes at the spike 
sampling points tn = nT1. This product we shall call x(t), it is our "sampled signal", and ω1 is the 
radian/sec "sampling rate".  
   

 x(t) = y(t) d(t)  = ∑
n = -∞

∞
  y(t)T1δ(t - nT1)  = ∑

n = -∞

∞
  y(tn) T1δ(t - nT1) = ∑

n = -∞

∞
  yn T1δ(t - nT1)  (20.3) 

 
where yn ≡ y(tn) and tn = n T1. We can apply the "reverse" convolution theorem stated in (3.7) to the 
leftmost equation in (20.3) to get 
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 X(ω) = (1/2π) ∫
-∞

 ∞ dω' Y(ω - ω') D(ω')  .       (20.4)  

 
Inserting (20.2) into (20.4) quickly yields a famous result 
 

 X(ω) = (1/2π) ∫
-∞

 ∞ dω' Y(ω - ω') D(ω') = (1/2π) ∫
-∞

 ∞ dω' Y(ω - ω')[ ∑
m = -∞

∞
  2πδ(ω' - mω1)] 

   = ∑
m = -∞

∞
   ∫

-∞

 ∞ dω' Y(ω - ω') δ(ω' - mω1)  = ∑
m = -∞

∞
   Y(ω - mω1) 

or 

 X(ω)  =  ∑
m = -∞

∞
  Y(ω - mω1) .        (20.5) 

 
We have therefore shown that,   
 

 x(t)  = ∑
n = -∞

∞
   T1 δ(t - tn) y(t)    = ∑

n = -∞

∞
   T1 δ(t - tn) y(tn)     (20.6)  

 X(ω)   =  Y(ω) + ∑
m ≠ 0

 
  Y(ω - mω1) .        (20.7) 

 
The first term on the right side of (20.7) is the good old Fourier Integral spectrum of y(t). The second term 
is a set of identical copies of Y(ω) that are shifted by all possible integer multiples of ω1. Usually these 
are called image spectra, and the term Y(ω) is called the main spectrum. Here is a picture,  
 

  
 

 Figure 20.1. Example of a main spectrum with four of the image spectra.    Fig 20.1 
 
Thus, by sampling signal y(t) with delta functions to create the sampled signal x(t), we have picked up an 
infinite set of image spectra in addition to the main spectrum Y(ω).  
 
If the spectrum Y(ω) of the "reasonable" original signal y(t) completely cuts off at some ωc below ω1/2 
(as shown in Figure 20.1), then the spectra are completely disjoint. One can then run signal x(t) through a 
low-pass filter that removes all these image spectra, ending up with X(ω) = Y(ω). And from Y(ω), one 
can presumably reconstruct y(t). Thus, these image spectra can be "dealt with". The larger the gaps 
between the spectra, the lower the cost of the low-pass filter required to remove the image spectra.  
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Of course if the spectrum of y(t) has ωc >  ω1/2, then the spectra in (20.7) and Fig 20.1 overlap, and it is 
impossible to recover Y(ω) by itself using a low pass filter. If a low pass filter is placed just above the end 
of the Y(ω) spectrum at ωc, the filtered signal will be contaminated with contributions from the first 
image spectrum, an effect loosely known as aliasing, as indicated in this picture,  
                 

        
 

 Figure 20.2. Here the image spectra overlap the main one. This is bad news.    Fig 20.2 
 

There is no place one can set a low-pass or band-pass filter to cleanly capture just the main spectrum (or 
any of its images) by itself. To avoid this problem, one must select the sampling rate ω1 > 2ωc. The 
quantity 2ωc is known as the Nyquist rate, so the sampling rate must be larger than the Nyquist rate. This 
means that for the highest frequency of interest, one must have at least 2 samples per sine wave. In audio, 
one thinks of  ωc/2π  ≈ 20 KHz, so the Nyquist rate is 2ωc/2π = 40KHz and typical values for ω1 are 
ω1/2π  = 44.1 KHz or 48 KHz. Aliasing in audio sounds like distortion, and in video causes "edge 
jaggies" and other artifacts.  
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21. Digital Filters, Image Spectra and Group Delay 
 
(a) A Digital Filter as an approximation to an Analog Filter 
 
In Section 3 we derived the convolution theorem stated in (3.6) which we repeat here: 
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t') c(t') sometimes written      a = b * c     (21.1) 

 
 A(ω) = B(ω) C(ω) .         (21.2) 
 
As demonstrated in Section 4 (b), one can interpret c(t) as an input signal, a(t) as an output signal, and b(t) 
as a "filter" which acts on the input to create the output.  Equation (21.2) shows the action of such a filter 
in the frequency domain. B(ω) might be a low-pass filter, a band-pass filter, or some other filter.  
 
When a spectrum like B(ω) is associated with a filter, it is called the transfer function of that filter.   
 
As discussed in the second comment after (3.7), the filter (21.1) can be thought of as a = Bc where B is a 
linear integral operator, so the filter (21.1) is linear in the usual sense of a linear operator,  
 
 B (c1+c2) = Bc1 + Bc2 and B (αc) = αB (c).  
 
Moreover, by considering the fact that 
 

 a(t+Δ) =  ∫
-∞

 ∞  dt' b(t+Δ-t') c(t')  =  ∫
-∞

 ∞  dt" b(t-t") c(t"+Δ)   //  -t"  = Δ - t'  (21.3) 

 
one sees that the filter is invariant under a time shift of the input stream. This might not be the case if the 
filter kernel had the more general form b(t,t') instead of b(t-t').  
 
Filters of the type (21.1) are therefore referred to as linear time-invariant (LIT) filters.  
 
A time-domain digital filter can only approximate the continuous integration shown in (21.1). What a 
digital (FIR) filter really does is this,  
  

 a(tn)  =  ∑
m = -∞

∞
   ∆t  b(tn  - tm) c(tm)     where  tn = n ∆t .     (21.4) 

 
The objects appearing in (21.4) are just numbers -- the values the functions a, b and c take at particular 
times, so one could just as well write this as 

 

 an = ∑
m = -∞

∞
  ∆t  bn-m cm   .         (21.5) 
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Think of the "digital filter" as a set of numbers bk ; ck is the input signal to the filter, and an is the output 
of the filter. Typically these numbers are represented by one byte in (black & white) video, and by two 
bytes in audio. The set of numbers bk is in practice finite. For example, a "5 tap filter" has only these 
non-zero values:  b-2, b-1, b0, b1, b2 . Therefore the summation in (21.5) in practice is finite. ∆t is the 
time between samples, so perhaps 1/∆t is 13.5 MHz for digital 601 video or 44.1 KHz for digital audio.  
 
Since in digital practice the convolution integral (21.1) is replaced by the summation (21.5), one is forced 
to ask oneself: what happens in this case to (21.2)? We have all the tools needed to answer this question. 
 
Recall the Fourier Integral transform pair (1.1) and (1.2) which we repeat here,  
 

 X(ω) =  ∫
-∞

 ∞  dt x(t) e-iωt   // projection,  transform    (21.6) 

 x(t) = 
1
2π  ∫

-∞

 ∞ dω X(ω) e+iωt  .  // expansion,  inverse transform   (21.7) 

 
If we set t = tn = n ∆t , we can rewrite (21.7) as:   
 

 x(tn) = 
1
2π  ∫

-∞

 ∞ dω X(ω) e+iωnΔt .       (21.8)  

           
Here now is the set of steps one needs to carry out: 
 
(1) write (21.8) for each of the functions a(tn), b(tn) and c(tn) in terms of A(ω), B(ω), and C(ω') :  
 

 a(tn) = 
1

2π  ∫
-∞

 ∞ dω A(ω) e+iωnΔt 

 b(tn) = 
1
2π  ∫

-∞

 ∞ dω B(ω) e+iωnΔt 

 c(tm) = 
1

2π  ∫
-∞

 ∞ dω' C(ω') e+iω'mΔt        (21.9) 

        
(2) jam these three expansions into (21.4) : 
 

 a(tn)  =  ∑
m = -∞

∞
   ∆t  b(tn  - tm) c(tm)        (21.4) 

 
1

2π  ∫
-∞

 ∞ dω A(ω) e+iωnΔt  = ∑
m = -∞

∞
   ∆t 

1
2π  ∫

-∞

 ∞ dω B(ω) e+iω(n-m)Δt  
1

2π  ∫
-∞

 ∞ dω' C(ω') e+iω'mΔt 

 
(3) move the m-summation as far to the right as possible, it comes to rest against an exponential, 
 

 RHS  = 
1

2π  ∫
-∞

 ∞ dω B(ω) e+iωnΔt  
1

2π  ∫
-∞

 ∞ dω' C(ω') ∑
m = -∞

∞
   ∆t e+i(ω'-ω)mΔt  
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(4) do this summation using the exponential addition theorem (13.2) with k = ∆t(ω - ω') : 
 

 ∑
m = -∞

∞
   eimΔt(ω-ω')  = ∑

m = -∞

∞
  2π δ[ ∆t(ω - ω') - 2πm ]    =  (2π/∆t) ∑

m = -∞

∞
   δ( ω - ω' - mω1)  

 
Right here is where the image spectra described below first appear!  Both sides of this equation treated as 
a function of ω are periodic with period ω1. If we were to multiply both sides by Δt then take the limit 
Δt→0 we would get  (since ω1 = 2π/Δt, this means ω1→ ∞ as well)  
 

  ∫
-∞

 ∞ dt eit(ω-ω') = 2π δ(ω-ω') 

 
which is just (2.1). The images (δ lines at this point) have run off to infinity and the function is no longer 
periodic. So image spectra arise from the fact that a discrete sum of phasor functions eimΔt(ω-ω') ( each 
of which is periodic in ω) produces a periodic function, even if that sum is infinite.  
 
(5) kill the dω' integration against the delta function 
 

 RHS  = 
1

2π  ∫
-∞

 ∞ dω B(ω) e+iωnΔt  
1

2π  ∫
-∞

 ∞ dω' C(ω') 2π ∑
m = -∞

∞
  δ( ω - ω' - m ω1) 

      = 
1
2π  ∫

-∞

 ∞ dω B(ω) e+iωnΔt ∑
m = -∞

∞
    ∫

-∞

 ∞ dω' C(ω') δ( ω - ω' - m ω1) 

      = 
1
2π  ∫

-∞

 ∞ dω B(ω) e+iωnΔt ∑
m = -∞

∞
   C(ω-mω1) 

so that  
 

 
1

2π  ∫
-∞

 ∞ dω A(ω) e+iωnΔt   =  
1

2π  ∫
-∞

 ∞ dω B(ω) e+iωnΔt ∑
m = -∞

∞
  C(ω-mω1)  . 

 
Since the functions e+iωnΔt form a complete set, we may identify the integrands to obtain 
 

 A(ω)  = B(ω) ∑
m = -∞

∞
  C(ω-mω1) .        (21.10) 

 
(6) Alternatively, we could kill the dω integration against the delta function. We repeat the first line in (3) 
changing the order of integration 
 

 RHS  =  
1
2π  ∫

-∞

 ∞ dω' C(ω')  
1
2π  ∫

-∞

 ∞ dω B(ω) e+iωnΔt  2π ∑
m = -∞

∞
  δ( ω - ω' - m ω1) 

     =  
1
2π  ∫

-∞

 ∞ dω' C(ω')  ∑
m = -∞

∞
   ∫

-∞

 ∞ dω B(ω) e+iωnΔt   δ( ω - ω' - m ω1) 
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     =  
1
2π  ∫

-∞

 ∞ dω' C(ω')  ∑
m = -∞

∞
   B(ω' + mω1) e+i(ω'+ mω1n)Δt  . 

 
But eimω1nΔt  = 1 because mω1nΔt = mn(2π/T1)T1 = mn2π. Since the m sum is symmetric, we can 
replace m→ -m making no difference, and we then replace ω'→ω on the RHS. The result is then 
 

 
1

2π  ∫
-∞

 ∞ dω A(ω) e+iω'nΔt =  
1

2π  ∫
-∞

 ∞ dω C(ω)eiωΔt  ∑
m = -∞

∞
   B(ω - mω1)  . 

 
Again using the completeness of the e+iωnΔt basis functions, we equate integrands to get 
 

 A(ω) = ∑
m = -∞

∞
   B(ω - mω1)  C(ω)   .        (21.11) 

 
which is the form we shall use below. We noted in (3.2) how the convolution theorem is invariant under 
b↔c, and we see this symmetry in the two results just obtained, (21.10) and (21.11). We have then 
arrived at this statement of our digital convolution theorem:  
 

 a(tn)  =  ∑
m = -∞

∞
   ∆t  b(tn  - tm) c(tm)  tn = n ∆t      (21.12) 

 A(ω)    =  [ B(ω)   +  ∑
m ≠ 0

 
  B(ω -  mω1)  ] C(ω)   .      (21.13) 

 
This pair of equations should be compared to the analog convolution theorem (21.1) and (21.2),  
  

 a(t) =  ∫
-∞

 ∞  dt' b(t-t') c(t') sometimes written a = b * c    (21.1) 

 
 A(ω) = B(ω) C(ω)          (21.2) 
 
We see that there is a penalty for working in the imperfect, discrete world of time-sampled signals like 
a(tn). The penalty is that there are extra ω-space terms in (21.13) that are not present in (21.2).  
 
Recall that B(ω) is the spectrum (transfer function) of a filter kernel b(t) which we are approximating by a 
set of coefficients bk. In analogy with the spectrum X(ω) shown in (20.7) of a delta-sampled signal x(t), 
the main term B(ω) in (21.13) is called the main spectrum of the filter, while the other terms in the square 
bracket are the filter's image spectra passbands. The filter then has a transfer function which looks like the 
spectrum of Fig 20.1.  
 
A perfect analog filter would of course have no such image spectra, this is what (21.2) is all about. It has 
no such artifacts because it filters at all times t, not just at particular points tn. The digital filter is "blind" 
between sample points, so you can stick it with some high frequency signals which wiggle an arbitrary 
number of wiggles between the sample points. These high frequency signals are what in effect get passed 
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through the image pass bands of a digital low-pass filter. All the above math should not blind the reader 
to this straightforward physical understanding of the image spectra. Here is an example,  
 

       Fig 21.1 
 
The red and black signals are treated exactly the same by a digital filter since they have exactly the same 
sample values. But the red signal has a very strong frequency component with period Δt = T1 and thus 
with frequency ω1 = 2π/T1 and so the red signal in effect passes through the first image passband of the 
filter, giving the same output signal that the black signal would give going through the main passband. 
One says that the red signal is an alias of the black signal, or it is aliased into the black signal, giving the 
same filter output. Perhaps a violin comes of our filter out sounding like a tuba.  
 
A common use of a digital filter is to remove the image spectra of digitized signals. These image spectra 
are sitting staring us in the face in (20.7). Suppose we construct a digital filter with some set of bn 
coefficients to implement a low-pass filter to remove the signal image spectra. But we have just seen that 
this filter itself has image passbands, so we have to be careful that some of the image spectra of our 
sampled signal x(t) don't slip through these image pass bands of the filter. A standard trick 
("oversampling") is to run the filter at a rate ω'1 which is perhaps 4X or 8X times faster than the rate ω1 
of the sampled signal (ω1 = 2π/Δt). Recall that ω1 > 2ωc, the Nyquist rate. The filter's image spectra now 
at mω1' are then pushed away from the central region, causing the lower image spectra of the signal x(t) 
to be blocked by the filter. Some very high frequency data might get through the image bands of the filter, 
but this can be removed by a simple analog filter (perhaps just a resistor and capacitor) after the D/A 
converter which converts the digital signal to analog. An example of this technique is presented in Section 
30 using a digital filter implemented in Section 29 which has the desirable properties of Section 28.  
 
(b) Filter Group Delay 
 
The discussion here is given in terms of an analog filter. The steps stated below can be repeated for a 
digital filter and one arrives at the same set of conclusions.  
 
Recall the convolution theorem from the start of this section,   
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t') c(t') sometimes written      a = b * c     (21.1) 

 
 A(ω) = B(ω) C(ω) .         (21.2) 
 
We interpret this as a filter acting on signal c(t) to produce signal a(t). To assist this interpretation, we 
rename signals in this way  ( i = input, o = output)  
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 o(t) =  ∫
-∞

 ∞  dt' b(t-t') i(t') sometimes written      o = b * i     (21.1) 

 
 O(ω) = B(ω) I(ω)          (21.2)  
 
where b and B represent the action of the filter. In general we can write the complex filter spectrum in 
terms of its magnitude and phase functions (using a traditional sign convention for said phase)  
 
 B(ω) = |B(ω)| e-iφ(ω) .          (21.14) 
 
In order to derive the concept of group delay, we assume that our filter is a passband filter of width 2a 
centered at some frequency ω2, and having this somewhat idealized spectral shape,  
 

 B(ω) =  
⎩
⎨
⎧  |B(ω)| e-iφ(ω)    if ω2-a < ω < ω2+a
 0                       outside this narrow band        (21.15) 

 
This could for example be a low-pass filter centered at ω2 = 0 with ω range (-a,a).  
 
Let us assume that i(t) represents a very narrow input pulse whose center lies at t = 0. Since the pulse is 
narrow in the time domain, we know (uncertainty principle in Section 1) that it will have a broad 
smoothly-varying spectrum Xpulse(ω). The ultimate pulse is i(t) = δ(t) which has Xpulse(ω)  = 1 from 
(8.3).  
 
From (1.2) the output of the filter can be written as 
 

 o(t) = (1/2π)  ∫
-∞

 ∞ dω O(ω) e+iωt  = (1/2π)  ∫
-∞

 ∞ dω B(ω) I(ω) e+iωt 

 

  = (1/2π)  ∫
-∞

 ∞ dω B(ω) Xpulse(ω)e+iωt  = (1/2π)  ∫
ω2-a

 ω2+a dω  |B(ω)| Xpulse(ω)e-iφ(ω)e+iωt 

 

  ≈   (1/2π) |B(ω2)| Xpulse(ω2)  ∫
ω2-a

 ω2+a dω e-iφ(ω)e+iωt  .  

 
We have assumed that |B(ω)| is a smooth function near ω = ω2 to make the approximation on the last line. 
Similarly, we assume that that filter phase function is also smooth so we can approximate it in this linear 
fashion in the neighborhood of ω = ω2,  
 
 φ(ω) ≈ φ(ω2) + (ω-ω2)φ'(ω2)  = α + (ω-ω2)β  α = φ(ω2) β = φ'(ω2)  .  (21.16) 
 
Then we find that 
 

 o(t) ≈ (1/2π) |B(ω2)| Xpulse(ω2) e-i(α-βω2)   ∫
ω2-a

 ω2+a dω e+iω(t-β) . 
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The integral may be evaluated as 
 

  ∫
ω2-a

 ω2+a dω e+iω(t-β)  = [i(t-β)]-1 [ e+i(ω2+a)(t-β) - e+i(ω2-a)(t-β)] 

 
  = [i(t-β)]-1 eiω2(t-β)  2i sin[a(t-β)]    =  2a eiω2(t-β)  sin[a(t-β)]/ [a(t-β)] 
 
  =  2a eiω2(t-β)  sinc[a(t-β)] .        (21.17) 
 
Thus, the filter output is 
 
 o(t) =  (a/π) |B(ω2)| Xpulse(ω2)  e-i(α-βω2)  eiω2(t-β) sinc[a(t-β)] 
 
  =  [(a/π) |B(ω2)| Xpulse(ω2)  e-iα]  eiω2t sinc[a(t-β)]  .     (21.18) 
 
The last two factors show the time dependence of o(t). The eiω2t represents an oscillation at ω2 which is 
the center of the bandpass filter. This is modulated by an envelope function sinc[a(t-β)] causing the 
spectrum of o(t) to fill the pass band, as we also know from O(ω) = B(ω) I(ω) . The initial narrow pulse 
i(t) = Xpulse(t) is spread out into a pulse o(t) of width determined by the first zero of the sinc function, 
and centered at t = β.  Comparing the center of the input and output pulses, one concludes that the pulse 
has been delayed by amount β, which is known as the group delay. Recall that β = φ'(ω2) .  
 
We have therefore proven the following theorem:  
 
Group Delay Theorem. When a narrow time-domain pulse is passed through a bandpass filter, the 
output pulse is delayed approximately by an amount τd = dφ/dω evaluated at the bandpass center 
frequency. This delay is called the group delay of the filter.      
             (21.19) 
 
Corollary.  If the phase function of a filter φ(ω) is linear in ω, then the phase approximation made in 
(21.16) is exact, so the theorem just stated has a group delay which is a constant throughout the passband 
of the filter. That is to say, dφ/dω is a constant for a filter with linear phase. The implication is that 
different pulse shapes, each having slightly different spectra, will all pass through the filter with the same 
delay, regardless of where in the bandpass band these pulse spectra hit. The result is good "fidelity" of a 
time varying signal such as an audio signal or a radar pulse stream.   
             (21.20) 
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22. The Digital Fourier Transform X'(ω) Part I  
 
As a reminder from the opening paragraph of this Chapter,  
 
 T1 = ∆t  ω1 = 2π/T1 = 2π/∆t  tn =  n ∆t = n T1  . 
 

Recalling from (1.1) that X(ω) =  ∫
-∞

 ∞  dt x(t) e-iωt, we can write down the following non-equation:  

 

 X(ω)  ≠ ∑
n = -∞

∞
  ∆t x(tn) e-iωnΔt  projection = transform    (22.1) 

 
X(ω) is the genuine Fourier Integral transform of x(t). Only in the limit ∆t → 0 are the two sides equal, 
and we then reproduce (1.1). So let's define something new called X' that is equal for any finite ∆t: 
 

 X'(ω)  ≡ ∑
n = -∞

∞
  ∆t x(tn) e-iωnΔt  projection = transform    (22.2) 

 
Dimensions:   If  Dim[x(tn)] = V, then Dim[X'(ω)]  = V-sec, the same as Dim[X(ω)]  .  
 

Although X(ω) can have any shape we want, the new spectrum X'(ω) is periodic with period ω1 ,  
 

 X'(ω - mω1 ) = ∑
n = -∞

∞
  ∆t x(tn) e-i(ω-mnω1)Δt    =  ∑

n = -∞

∞
  ∆t x(tn) e-iωnΔt  = X'(ω) 

 
where, as earlier, eimω1nΔt  = 1 because mω1nΔt = mn(2π/T1) T1 = mn2π. So X'(ω) is periodic:  
 
 X'(ω - mω1 ) = X'(ω)  m = any integer   .     (22.3)  
 

We now claim (to be shown below) that the inverse of (22.2) is the following:  
 

 x(tm)  =  
1

2π  ∫
-ω1/2

 ω1/2

  dω X'(ω) e+iωmΔt    expansion = inversion    (22.4) 

 
This looks like to (1.2) except the integration endpoints are here finite. Thus, we have a different 
projection formula, and a correspondingly different expansion formula. For want of a better name, let us 
call this new transform the Digital Fourier Transform pair, as opposed to the Fourier Integral Transform 
pair given in (21.6) and (21.7).   
 We shall now verify that (22.4) is correct "in both directions". We do this in full detail to give the 
reader a chance to "practice" using many results presented earlier.  
  
First, insert (22.4) into the right side of (22.2) to get ,  
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  ∑
n = -∞

∞
  ∆t x(tn) e-iωnΔt  = ∑

n = -∞

∞
  ∆t  [

1
2π  ∫

-ω1/2

 ω1/2

  dω' X'(ω') e+iω'nΔt] e-iωnΔt 

  = 
1

2π  ∫
-ω1/2

 ω1/2

  dω' X'(ω) Δt ∑
n = -∞

∞
   e+inΔt(ω'-ω)    // sliding n sum to the right 

  = 
1

2π  ∫
-ω1/2

 ω1/2

  dω' X'(ω) Δt  ∑
m = -∞

∞
  2πδ(Δt(ω'-ω) - 2πm) // (13.2) with k = Δt(ω'-ω) 

  = ∑
m = -∞

∞
   ∫

-ω1/2

 ω1/2

  dω' X'(ω') δ(ω'-ω-mω1)   // δ(ax) = (1/a)δ(x) 

   = ∑
m = -∞

∞
   X'(ω+mω1)  Θ( -ω1/2 ≤ ω+mω1 ≤ ω1/2)  // (2.2) with special Θ notation 

  = X'(ω) ∑
m = -∞

∞
   Θ( -ω1/2 ≤ ω+mω1 ≤ ω1/2)    // (22.3) that X'(ω + mω1 ) = X'(ω) 

 
  = X'(ω)   .      // (A.50), see Appendix A (e).  (22.5) 
 
In the second last step, we used (22.3) that X'(ω+mω1) = X'(ω), allowing X'(ω) to be extracted from the 
sum on m. Then in the last step we use (A.50) with α = ω1 and x = ω. The sum Σm Θ  = 1 basically says 
that one partitions the curve f(ω) = 1 into little sections of length ω1, with attention paid to what happens 
at the boundaries of these little sections.  
 
Second, insert (22.2) into the right side of (22.4) to get 
 

 
1

2π  ∫
-ω1/2

 ω1/2

  dω X'(ω) e+iωmΔt  = 
1

2π  ∫
-ω1/2

 ω1/2

  dω [ ∑
n = -∞

∞
  ∆t x(tn) e-iωnΔt] e+iωmΔt  

 = 
1

2π ∑
n = -∞

∞
  ∆t x(tn)  ∫

-ω1/2

 ω1/2

  dω  e-iω(n-m)Δt   = 
1
π ∑

n = -∞

∞
  ∆t x(tn)  ∫

0
 ω1/2 dω cos[(n-m)Δtω]  

  =  
1
π ∑

n = -∞

∞
  ∆t x(tn) δn,m  (π/Δt) = ∑

n = -∞

∞
   x(tn) δn,m  =  x(tm) 

 

Here we have used  ∫
0
 ω1/2 dω cos[(n-m)Δtω] = δn,m (π/Δt) since 
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  ∫
0
 ω1/2 dω cos[(n-m)Δtω]  = 

1
(n-m)Δt  sin[(n-m) Δt (ω1/2) ]  = 0  n ≠ m 

  ∫
0
 ω1/2 dω cos[(n-m)Δtω]  =   ∫

0
 ω1/2 dω  = (ω1/2) = (π/Δt)   n = m 

 
One should keep in mind that this new transform, the Digital Fourier Transform, is dependent on the 
constant ∆t = T1. Changing this constant changes the transform. The Fourier Integral Transform contains 
no such constant. In effect, T1 = 0.  
 
We use the term "digital" in Digital Fourier Transform only because in the time domain the function x(t) 
is represented by a sequence of evenly spaced samples x(tn) and we say nothing about what x(t) might be 
doing between these sample times. The term Digital Fourier Transform is just our unofficial name for this 
transform, and the official name will appear later in Section 24.   
 Notice that both the Fourier Integral Transform and the Digital Fourier Transform are (at first) used to 
analyze time-domain functions (or sequences) that are of limited temporal extent, so we think of x(t) or 
x(tn) more or less as some kind of pulse. Technically, x(t) or x(tn) are non-periodic (aperiodic). Here is a 
side by side comparison of these two transforms:  
 
Fourier Integral Transform 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform    (1.1) 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt  expansion = inverse transform   (1.2) 

 
Digital Fourier Transform 

 X'(ω)  ≡ ∑
n = -∞

∞
  ∆t x(tn) e-iωnΔt  projection = transform    (22.2) 

 x(tm) = 
1
2π  ∫

-ω1/2

 ω1/2

  dω X'(ω) e+iωmΔt    expansion = inversion    (22.4) 

 
For an aperiodic temporal function x(t) or sequence x(tn), the spectra X(ω) and X'(ω) are both continuous 
spectra, even though (1.1) shows X(ω) as an integral and (22.2) shows X'(ω) as a sum of functions which 
are continuous in ω. In the next section, we shall see the fascinating relationship between X(ω) and X'(ω). 
 
In the limit Δt→0, X'(ω)  →  X(ω)  and ω1→ ∞, so the Digital Fourier Transform is where the Fourier 
Integral Transform ends up if the continuum of time is divided into discrete chunks.  
 

Now let's go back to our discrete convolution relation (21.4),  
 

 a(tn)  = ∑
m = -∞

∞
  ∆t  b(tn - tm) c(tm)  tn = n ∆t  .    (22.6) 

Dimensions:  dim(b) = sec-1, dim(Δt b) = 1, so dim(a) = dim(c).  
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What does this look like in the frequency domain?  To find out, we insert into (22.6) expansions of the 
form (22.4) for the functions a, b and c. We just did this in Section 21 above. The steps (1),(2),(3),(4) are 
exactly the same except our dω and dω' integration endpoints are (-ω1/2, ω1/2) instead of (-∞,∞). The first 
new feature occurs in step (5) where we pick up the analysis:  
 

 
1

2π  ∫
-ω1/2

 ω1/2

 dω A'(ω) e+iωnΔt  = 
1
2π  ∫

-ω1/2

 ω1/2

 dω B'(ω) e+iωnΔt  
1

2π  ∫
-ω1/2

 ω1/2

 dω' C'(ω') 2π ∑
m = -∞

∞
  δ( ω - ω' - m ω1) 

 = 
1

2π  ∫
-ω1/2

 ω1/2

 dω B'(ω) e+iωnΔt ∑
m = -∞

∞
   ∫

-ω1/2

 ω1/2

 dω' C'(ω') δ( ω - ω' - m ω1) 

 = 
1

2π  ∫
-ω1/2

 ω1/2

 dω B'(ω) e+iωnΔt ∑
m = -∞

∞
   C'(ω-mω1) Θ( -ω1/2  ≤ ω-mω1  ≤ ω1/2)  // (2.2) 

 = 
1

2π  ∫
-ω1/2

 ω1/2

 dω B'(ω) e+iωnΔt C'(ω) ∑
m = -∞

∞
   Θ( -ω1/2  ≤ ω-mω1  ≤ ω1/2)   //  (22.3) for C'(ω) 

 = 
1

2π  ∫
-ω1/2

 ω1/2

 dω B'(ω) e+iωnΔt C'(ω)      // (A.50), see Appendix A (e). 

 
Since e+iωnΔt forms a complete set on the interval (-ω1/2, ω1/2), we may equate integrands to find 
 
 A'(ω)  =  B'(ω)C'(ω) .         (22.7) 
 
Thus, our new Digital Fourier transform yields this simple diagonalized result with none of those extra 
image terms. Of course we must remain aware that A'(ω) is not the genuine spectrum of a(t), it is some 
new thing. Just because we defined a new animal and got (22.7) does not mean that the image spectra go 
away in (20.7) and (21.10) and (21.11). Here then is the Digital Fourier Transform convolution theorem 
in comparison with that for the Fourier Integral Transform:  
 

 a(tn)  = ∑
m = -∞

∞
  ∆t  b(tn - tm) c(tm) ⇔  A'(ω)  =  B'(ω)C'(ω)  tn = nΔt  (22.8) 

 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t')  ⇔ A(ω) = B(ω) C(ω)    (3.6) 
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23. The Digital Fourier Transform X'(ω) Part II 
 
(a) Relation between X'(ω) and X(ω) 
 
The next problem is to figure out how the genuine Fourier Integral spectrum X(ω) is related to our new 
Digital Fourier Transform X'(ω). Start with the Fourier Integral expansion (1.2) ,  
 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt   expansion = inverse transform .  (1.2) 

 
Partition the integration into a set of little ranges of width ω1 : 
 

 x(t) = 
1
2π ∑

m = -∞

∞
    ∫

mω1-ω1/2

 mω1+ω1/2

 dω X(ω) e+iωt  . 

  
Change integration variable to ω' = ω - mω1,  
 

 x(t) = 
1
2π ∑

m = -∞

∞
    ∫

-ω1/2

 ω1/2

 dω' X(ω'+mω1) e+i(ω'+mtω1) 

  =  
1

2π  ∫
-ω1/2

 ω1/2

 dω' [ ∑
m = -∞

∞
   X(ω'+mω1) e+imω1t ] e+iω't  . 

 
Next,  set t = tn = nT1 on both sides. This makes the exponential inside the square bracket equal 1, so 
 

 x(tn) =  
1
2π  ∫

-ω1/2

 ω1/2

 dω' [ ∑
m = -∞

∞
   X(ω'-mω1) ] e+iω'nΔt   . 

 
Now compare this to the Digital Fourier expansion defined in (22.4) which we duplicate here, changing ω 
to ω' and m to n:  
 

 x(tn) =  
1
2π  ∫

-ω1/2

 ω1/2

  dω' X'(ω') e+iω'nΔt .  expansion = inversion   (22.4) 

 
Since the functions e+iω'nΔt form a complete basis on the interval (-ω1/2,ω1/2), equate integrands of the 
last two equations to get,  
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 X'(ω) = ∑
m = -∞

∞
  X(ω- mω1)   =   [  X(ω)  + ∑

m ≠ 0

 
  X(ω - mω1) ] .    (23.1) 

 
This is that thing that keeps popping up everywhere -- the main spectrum plus all the image spectra. Thus, 
we have shown that this combination is precisely the Digital Fourier Transform spectrum. We can 
therefore go back and reexamine some of our earlier results with this new knowledge:  
 
Consider (20.7):  
 

 X(ω) =  ∑
m = -∞

∞
  Y(ω - mω1)   =  [  Y(ω)  + ∑

m ≠ 0

 
  Y(ω - mω1) ] =  Y'(ω)  .    (23.2) 

 
This says that the Fourier Integral spectrum of a "reasonable" signal y(t) multiplied by a sequence of delta 
functions is exactly the Digital Fourier Transform spectrum Y'(ω). Of course Y'(ω) is computed from 
(22.2) from a knowledge of y(t) only at the sample points tn.  
 
Next, we realize that our digital filter equations (21.10) and (21.11) , 

 A(ω) =  B(ω) ∑
m = -∞

∞
  C(ω-mω1)   = ∑

m = -∞

∞
   B(ω - mω1)  C(ω) ,  

become 
 
 A(ω) =  B(ω) C'(ω)  
 A(ω) =  B'(ω) C(ω)           (23.3) 
 
The second equation is our low-pass digital filter B with input C and output A. The filter with all its 
image pass bands is now conveniently represented by B'(ω). A(ω) and C(ω) are still the Fourier Integral 
spectra of a and c. However, we already know from (22.7) that (23.3) is true with primes on A and C as 
well,  
 
 A'(ω) =  B'(ω) C'(ω) .         (23.4) 
 
It might seem unusual that (23.3) and (23.4) can all be true. They are all true, and we can now present a 
much more compact derivation of (23.4) by making use of (23.3) :  
 
 A(ω) =  B'(ω) C(ω)   // (23.3) which is really just (21.11)  
 
 A(ω -  mω1) =  B'(ω -  mω1) C(ω -  mω1)     // set ω → ω -  mω1, 
                    =  B'(ω) C(ω -  mω1)    // (22.3) for B'(ω) 
Then: 

 ∑
m = -∞

∞
   A(ω -  mω1)   =  B'(ω) ∑

m = -∞

∞
   C(ω -  mω1) 

or 
 A'(ω) =  B'(ω) C'(ω)   
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(b) Summary of the Digital Fourier Transform 
 
We now summarize what we know about the Digital Fourier Transform (this box takes 2 pages) 
 
          
 Digital Fourier Transform         (23.5) 
  
 1. Let x(t) be any reasonable function.  
 
 2. Divide up the time axis into steps tn = n ∆t;  let T1 = ∆t and ω1 = 2π/T1.   
 
 3. We can think of samples xn = x(tn) for the above x(t). Alternatively, we can think of the 
      xn as some given sequence, and one could then construct an infinite number of functions 
          x(t) for which xn = x(tn).   
 
 4. In terms of x(t),  the Digital Fourier Transform and its inverse are given by  
 

  X'(ω) ≡  ∑
n = -∞

∞
  ∆t x(tn) e-iωtn  projection = transform  (22.2)   // V-sec 

  x(tn) =  
1
2π  ∫

-ω1/2

 ω1/2

  dω X'(ω) e+iωtn  expansion = inversion  (22.4) // V 

 
    More generally, dispensing now with x(t) and writing tn = nT1 in the exponential,  
 

  X'(ω) ≡ T1 ∑
n = -∞

∞
  xn e-iωnT1  projection = transform 

  xn =  
1
2π  ∫

-ω1/2

 ω1/2

 dω X'(ω) e+iωnT1   expansion = inversion 

 
    If Dim(xn) = V, then Dim(X') = V-sec.  
 
 5. By its definition (and tn = n ∆t), X'(ω) is periodic in ω with period ω1: 
 
  X'(ω - mω1) = X'(ω)  m = any integer    (22.3) 
 
 6. The relation between X'(ω) and the Fourier Integral spectrum X(ω) of x(t) is given by: 
 

  X'(ω) = ∑
m = -∞

∞
  X(ω- mω1)   =   [  X(ω)  + ∑

m ≠ 0

 
  X(ω- mω1) ]  (23.1) 
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 7. The Digital Fourier Transform diagonalizes any convolution sum:  
 

  a(tn)  =  ∑
m = -∞

∞
  ∆t  b(tn  - tm) c(tm)   tn = n ∆t   (22.6) 

 
  A'(ω)  =  B'(ω) C'(ω)        (22.7) 
 
 8. It is also true that 
 
  A(ω)   =  B'(ω) C(ω)  =  B(ω)C'(ω)      (23.3) 
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24. The Z Transform X"(z) 
 
The Digital Fourier Transform described in Sections 22 and 23 is really the Z Transform times Δt. We 
have concealed this fact up till now because the ω-space version, called X'(ω) in Section 23,  allows direct 
comparison to the Fourier Integral spectrum X(ω). We have already drawn the major conclusions. Here 
we just change the clothing.  
 
Change variables from ω to dimensionless z,     [  ω1= 2π/Δt  so Δt = 2π/ω1 = π/(ω1/2) = T1 ]  
 

  z ≡ eiωΔt = eiπ[ω/(ω1/2)]  dz = z i ∆t dω   dω = 
dz

iz Δt   .   (24.1) 

 
Note that as ω runs over its range -ω1/2 to +ω1/2 , phasor z runs from -π to π on a unit circle. 
 
Now define the Z Transform X"(z) in terms of the Digital Fourier Transform X'(ω),  
 

 X"(z)  ≡  
1
∆t    X'(ω(z))  .          (24.2) 

 
Dimensions:  If Dim(xn) = V, then Dim(X') = V-sec so Dim(X") = V, the same as xn, see also (24.3).  
 
With this substitution, and letting  
 
 xn = x(tn) = x(n∆t),  
 
 the above Digital Fourier Transform formulas (22.2) and (22.4) (see box above) immediately become:  
 

 X"(z) = ∑
n = -∞

∞
  xn z-n   projection = transform     (24.3) 

 xn = 
1

2πi 
 ∫
C

 
 dz X"(z) zn-1  expansion = inversion     (24.4) 

 
where C is a contour doing one counterclockwise traversal of the unit circle in the z plane. These two 
equations are the Z Transform and its inverse. 
 
Limit Comment:  Since X'(ω) → X(ω) as Δt→0, it follows that  limΔt→0 [ Δt X"(z)] = X(ω).  So this is 
how one could get from the Z Transform to the Fourier Integral Transform.  
 
Mapping Comment: One can think of z = eiΔtω as describing an analytic mapping (conformal map) from 
the complex ω-plane to the z-plane. Here is a picture of that mapping : 
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    Fig 24.1 
 
 
The infinite gray vertical strip of the ω-plane with -ω1/2  ≤ Re(ω) ≤ ω1/2 maps into the entire z plane. The 
real axis in the red range  -ω1/2  ≤ ω ≤ ω1/2 maps into the unit circle in the z plane as shown. The upper 
half of the strip in the ω-plane maps into the interior of the unit circle, and the lower half of the strip maps 
into the exterior of the unit circle. The blue and green arrows map as shown. Generally, horizontal 
segments in ω map into origin-centered circles in z, and vertical lines in ω map into rays in z.  
 The z plane shows the principle Riemann sheet of the mapping with a black branch cut going off to 
the left from the z plane origin. If in the ω plane one continues the red arrow into the next strip to the 
right, Re(ω) > ω1/2, one dives through the branch cut on the right and arrives on the next sheet in z.  
 For some general function f(ω) define F(z) ≡ f(ω(z)). The function F(z) would have an induced 
branch cut as shown on the right, with some discontinuity across it. In this case, the red circle would not 
represent a closed integration contour, so the usual rules of complex integration around closed loops 
would not apply. However, if f(ω) were periodic with period ω1, there would be no discontinuity across 
the branch cut in F(z) because f(ω) would take the same value on the two vertical edges of the grey strip 
in the ω plane, and therefore F(z) would have the same value on the two sides of the cut, which means 
there is no cut. In this case, the red circle does represent a closed contour.  
 According to (22.3), the Digital Fourier Transform X'(ω) is periodic with period ω1. Therefore the Z 
Transform X"(z) has no branch cut and the red circle is a closed contour, as used in the examples below. 
This is why the Z Transform is so useful. The redundant information in the infinite number of vertical 
strips in the ω plane is reduced to non-redundant information in the z plane. The mapping is completely 
analytic, introducing no poles or branch cuts.  
 If a function F(z) = (z-a)-1 has a pole in the z plane at a, as shown in Fig 24.1 by the x on the right, 
then f(ω) has a pole at ωa = ln(a)/(iΔt) as shown by the x on the left, ln(a) < 0. To show this, consider ω in 
the neighborhood of ωa: 
  

 f(z(ω)) =  
1

z-a   =   
1

eiΔt(ω-ωa) eiΔtωa - a   = 
1

eiΔt(ω-ωa)a- a    = 
1

a(eiΔt(ω-ωa)- 1)  ≈  
1

aiΔt(ω-ωa) . 

 
The bottom line is that in going from the Digital Fourier Transform to the Z Transform, we are simply 
making a change of variable and removing redundant information. There is nothing dramatically new 
introduced by doing this. As we shall see below, there is a notational economy in writing z-1 for a delay 
of Δt in place of e-iΔtω .  
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So far in these notes we have run into the Fourier Integral Transform and its Sine and Cosine cousins, the 
Laplace Transform, the Fourier Series Transform, the Digital Fourier Transform, and the Z Transform. 
They are all variations on the same theme, and we have shown how they are all related to each other. 
They all have an analogous set of "basic results" and "rules". We now peruse these results and rules for 
the Z Transform.  
 
(a) Convolution Theorem 
 
According to the definition X"(z) ≡ X'(ω(z))/Δt, if we transcribe the convolution result A'(ω) = B'(ω) 
C'(ω) of (23.4) , we pick up an extra factor of ∆t . Thus we compare convolution theorems :  
  

 an  = ∑
m = -∞

∞
  ∆t  bn-m cm   ⇔  A'(ω)  =  B'(ω)C'(ω)    (22.8) 

 an  = ∑
m = -∞

∞
  ∆t  bn-m cm   ⇔  A"(z) =  ∆t B"(z) C"(z)    (24.5) 

 
Dimensions:  Dim(a,c,A",C") = V, Dim(b,B") = sec-1.  
 
In (24.5), it is convenient to absorb the Δt factor into the bn-m coefficients. To do this, we define 
 
 hn ≡ ∆t  bn           (24.6) 
 
so that (24.5) may be written in this simpler and more traditional form, where H"(z) is the Z Transform of 
hn, 

 an  = ∑
m = -∞

∞
  hn-m cm   ⇔  A"(z)  =  H"(z) C"(z)  .        (24.7) 

 
Dimensions:  Dim(a,c,A",C") = V, Dim(h,H") = 1. 
 
Equation (24.7) is the digital convolution theorem stated in terms of the Z Transform.  
 
(b) Unit Impulse 
 
The analog of the unit impulse δ(t-a) at t=a must be a sequence of numbers xn which are all zero except 
the one say at some integer m. We might write this as 
 
 xn = δm(n) ≡ δn,m   "unit impulse"   n = all integers, the sequence index (24.8) 
 

If we stuff this into the Z-Transform projection (24.3) , we get 
 
 X"(z)  = z-m  .  " unit impulse response"      (24.9) 
 

This looks a lot like our Fourier Integral result (8.2) (setting t1 = tm) 
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 x(t) = δ(t - tm)   
 
 X(ω) = e-iωtm  = e-iωΔtm   = z-m .       (8.2) 
 

The expression z-m on the right is the same in both cases. The Fourier Integral Transform does to its 
appropriate "unit impulse" just what the Z Transform does to its appropriate "unit impulse". The unit 
impulses are different.  
 
In a filter with input I and output O we have O"(z) = H"(z) I"(z), where H"(z) is the filter transfer 
function. If I is taken to be a unit impulse at time t=0, then from the above I"(z) = z0 = 1. Thus, quantity 
H"(z) is the z-domain response of the filter to an impulse at t=0. From (24.4) one can then get the time 
domain impulse response hn. We shall do this below for an "RC" filter.  
 
(c) Time Translation 
 
Above we show a unit impulse δm(n) at time m and its Z transform z-m. A unit impulse one step later in 
time would be δm+1(n), and its Z transform would be z-m-1 = z-m z-1 . This suggests that if a signal is 
delayed by one time step, its Z transform acquires a factor z-1. Advancing a signal one step means 
multiply by z+1. These facts are true for an arbitrary signal; they follow immediately from (24.4):  
 

 xn+1 = 
1

2πi 
 ∫
C

 
 dz X"(z) zn-1 z+1 // advance one step xn+1 ↔  z+1X"(z)  (24.10) 

 xn-1 = 
1

2πi 
 ∫
C

 
 dz X"(z) zn-1 z-1 // delay one step  xn-1 ↔  z-1X"(z) .  (24.11) 

 
A very similar thing happens in the Fourier Integral Transform world, where time translation generates a 
multiplicative phase as shown in (12.1):    x(t - t1)  ↔  X(ω) e-iωt1 . 
 
In general, one can delay a digital signal one step in time by running it through a D flip-flop having clock 
period Δt, so this is why such flip-flops are associated with z-1 in a digital filter. There is no analogous 
device to associate with z+1.  It would have to be a causality-violating device.  
 
(d) Derivative Limit  
 
Based on the preceding subsection, we know that the following difference of two sequences has this 
transform,  
 

 
xn –  xn-1

∆t           ↔      X"(z) [ 
1  -  z-1

 ∆t ]  .       (24.12) 
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This is just a simple superposition. If we take the limit ∆t → 0, the LHS becomes dx/dt, and the RHS 
becomes X"(z) iω, since z-1 = exp(-iω∆t) ≈ 1 - iω∆t. Since limΔt→0 [ Δt X"(z)] = X(ω), we are not 
surprised to find that the iω rule (11.1) applies to both X"(z) and X(ω).  
 
(e) Digital RC filter 
 
This filter was treated in terms of the Fourier Transform in Section 4 (b) where we wrote its analog 
description in (4.5),  
 
 RC dvo(t)/dt + vo(t) = vi(t) .     (4.5)   (24.13) 
  
Undoing the limit as just described above, we write this in digital form as 
 

  RC 
 vo(tn) - vo(tn-1)

∆t    + vo(tn)  = vi(tn)  .       (24.14) 

 
For any finite Δt, this equation is of course different from (24.13) but for small Δt we expect it to be a 
good approximation for the system described by (24.13).  
 Letting on ≡ vo(tn)  and in ≡ vi(tn) this reads 
 

  RC 
 on - on-1

∆t    + on  = in .        (24.15) 

 
Z Transform each of the four terms shown and use (24.11) on on-1 to get 
 

 RC O"(z) [ 
1  -  z-1

 ∆t ]  + O"(z) = I"(z)  

or 
 [ α (1-z-1) + 1] O"(z) = I"(z)  .   α ≡ (RC/Δt)  = dimensionless 
 
If we want to interpret this circuit as a digital filter, we write, as in (24.7), 
 
 O"(z) =  H"(z) I"(z) .         (24.16) 
   
The filter transfer function is then 
 

 H"(z)  = 
1

 α(1-z-1) + 1   = 
z

 α(z-1) + z   =  
z

(α+1)z -α   =  
z/(1+α)

 z - α/(1+α)   .   (24.17) 

 
We may now use (24.4) to recover the time domain signal,  
 

 hn = 
1

2πi 
 ∫
C

 
 dz H"(z) zn-1   = 

1
2πi(1+α)  

 ∫
C

 
 dz 

zn

 z - α/(1+α)    .    (24.18) 
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For n ≥ 0, the integrand has a single pole at location z = α/(1+α) where α = (RC/Δt).  As α ranges from 0 
to ∞, the pole location moves from 0 to 1, so it is always inside the unit circle contour, 
 

                   Fig 24.2 
 
The integral may be evaluated as 2πi times the residue at this pole : 
 

 hn = 
1

2πi(1+α)  2πi (
α

 1+α )n  =  
1
α  (

α
 1+α )n+1  =  

Δt
RC  (

α
 1+α )n+1 .    

 
The samples hn are dimensionless, but to compare with our earlier RC work we write as in (24.6) that hn 
= Δt gn to get 
 

 gn =  
1

RC  (
α

 1+α )n+1 .          (24.19) 

 
In the case n < 0, in addition to the pole just mentioned, there is a pole or order n at z = 0. But when n < 0, 
we can expand the contour out to a Great Circle at infinity and the z-|n| factor then causes the integral to 
vanish. The reason is that in this limit we have, with z = Reiθ,  
 

  ∫
GC

    dz  z-|n|-1   =  ∫
0

 2π Ri eiθ  e-iθ(|n|+1) R-(|n|+1)  = R-|n| {  ∫
0

 2π  e-iθ|n| }  . (24.20) 

 
But the integral {..} is finite, and as R→∞, R-|n| → 0 for n = -1,-2...  so the GC integral is 0.  
 
Thus, in terms of the Heaviside Step function,  
 
 gn = g(tn)  =  (1/RC)  (1+α-1)-n-1 θ(n+ε)  α = (RC/Δt)    (24.21) 
 
where ε > 0 is any quantity less than 1 so we avoid the fact that θ(0) = 1/2. We can compare this to the 
analog output of the true RC filter (4.10) 
 
 g(t) = (1/RC) e-(t/RC) θ(t) .        (4.10) 
 
Both the analog and digital filters demonstrate causality with the θ factors shown. However,  the analog 
filter decays in an exponential fashion, whereas the digital decays in a geometric manner. We can rewrite 
the digital result in this manner 
 
 gn = g(tn)  =  (1/RC) e-(n+1)ln(1+1/α) θ(n+ε)  .      (24.22) 
 
In the limit Δt << RC we have α << 1 and then ln(1+1/α) ≈ 1/α = Δt/(RC) and this result becomes 
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 g(tn)  =  (1/RC) e-(n+1)Δt/(RC) θ(n+ε)  = (1/RC) e-tn+1/(RC) θ(n+ε)   (24.23) 
 
and, since tn+1 = tn + Δt  ≈ tn, this replicates the analog result (4.10) in the small Δt limit.  
 So we learn that, in order to make our digital RC filter produce the same results as an analog RC 
filter, we must take Δt << RC, which is no big surprise since this was assumed at the start going from 
(24.13) to the difference equation (24.14).  
 
(f) Poles in H"(z) imply feedback and infinite impulse response (IIR) 
 
A general form for an implementable dimensionless transfer function H"(z) is a ratio of polynomials in z. 
We saw an example in the RC filter (24.17) above.  So consider this general form,  
 
 H"(z)   =  [Σn=0M anzn ]/ [Σn=0N bnzn] .        (24.24) 
 
In the special case that the denominator has the form Σn=1N bnzn   =  zk for some integer k ≥ M, we have 
 
 H"(z) =  [Σn=0M anzn] / (zk)  =   Σn=0M an zn-k =  Σn=0M an (z-1)k-n . 
 
Since k ≥ M, the exponents on  (z-1)k-n are all non-negative. In this case we can write 
 
 H"(z) = a0(z-1)k +  a1(z-1)k-1  +  .....  + aM (z-1)k-M 
 
           = a0z-k +  a1z-k+1  +  .....  + aM z-k+M    k ≥ M    (24.25) 
 
where all the (z-1) exponents are non-negative integers. As we shall show by example below, since a 
filter transfer function having this general form has only positive powers of (z-1), it can be implemented 
by hardware which has no feedback loops, and which therefore has an output which dies out some finite 
number of clocks after the input dies out. If this filter is given an impulse as input, the output dies out 
after a certain number of clocks. Thus, the filter has a finite impulse response and is then called a Finite 
Impulse Response or FIR filter (example below).  
 Notice that in our special case H"(z) has a pole of order k at z = 0. When we later claim that transfer 
functions having poles must be implemented in hardware with feedback giving an infinite impulse 
response, we are referring to poles not located at z = 0.  
  
For our example we shall assume k = M = 2. Then, 
 
 H"(z)  = a0z-2 + a1z-1 + a2   = A + Bz-1 + Cz-2.       (24.26) 
 
Then if I"(z) and O"(z) are the input and output of our filter,  
 
 O"(z) = H"(z) I"(z),          (24.16) 
 
we have 
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 O"(z)  =   [A + Bz-1 + Cz-2] I"(z)  = A I"(z) + Bz-1 I"(z) + Cz-2 I"(z)   (24.27) 
 
Using the shift rule (24.11) we can translate the above equation into the time domain to get 
 
 on   =  A in + B in-1 + C in-2 .        (24.28) 
 
These last two equations can be represented by these diagrams:  
 

 
                      Fig 24.3 
 
The time-domain diagram represents a piece of "hardware" wherein the output is developed with two D 
flip-flop registers (clock period Δt) and three constant multipliers and two adders. This hardware circuit 
has no "feedback" because no flip-flop output is ever involved in determining a flip-flop input. 
Sometimes authors combine these two pictures, drawing the time domain register elements as boxes with 
z-1 labels inside. This convention appears in the following wiki picture (left),  
 

        
  http://en.wikipedia.org/wiki/Finite_impulse_response               Fig 24.4 
 
On the right we show the usual notation for attaching a clock to a register. In these pictures, each line (but 
not the clock) represents a "bus" of however many bits n is used to represent a digital sample. The triangle 
symbol for a multiplier suggests an "amplifier" which scales a signal. Later we shall use a simple X 
placed on a bus to indicate multiplication by a constant. The flip-flops are clocked by a square-wave clock 
pulse train having period Δt. At each positive edge of the clock signal, the value which the register input 
has just before that edge is loaded into the register. The register output then holds that value constant until 
the next positive clock edge.   

http://en.wikipedia.org/wiki/Finite_impulse_response�
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 Here is the response of the circuit of Fig 24.3 to a unit impulse aligned with i1 :  
 

         Fig 24.5 
 
and it seems pretty clear that the impulse response is finite.  
 
We now consider a different example with poles. Suppose H"(z) is the inverse of that of the previous 
example,  
 

 H"(z) = 
z2

Az2+Bz+C  = 
1

A+Bz-1+Cz-2        (24.29) 

 
so now H"(z) has some non-zero poles (poles not at z=0). Then we get I and O swapped, so 
 
 I"(z) = [ A + Bz-1 + Cz-2 ] O"(z)  .         (24.30) 
 
Solve this for O"(z) in the following manner (solve for A O"(z) then divide by A),  
 
 O"(z) = (1/A) I"(z) + (- B/A) z-1 O"(z) + (- C/A) z-2 O"(z) .    (24.31) 
 
Translating this to the time domain using rule (24.11) gives, 
 
 on = (1/A) in +  (- B/A) on-1  +  (- C/A) on-2  .      (24.32) 
 
The corresponding drawings are these : 
 

 
                    Fig 24.6 
 
Here one can see the feedback: register inputs are dependent on register outputs. This is an Infinite 
Impulse Response (IIR) filter, since the impulse response hn carries on forever due to the feedback. See 
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hn in (24.19) as another example: geometric decay which never goes away completely. In that example 
the transfer function H(z") has a pole as shown in (24.17). [ The response might go away in a real digital 
circuit with a finite number of quantization bits. ] 
 
(g) The Digital RC filter revisited 
 
We can now draw up the RC filter discussed above. We had in (24.16) and (24.17),  
 

 O"(z) =  [H"(z) ]I"(z) = 
z/(1+α)

 z - α/(1+α)  I"(z)  =  
1/(1+α)

 1 - z-1α/(1+α)  I"(z)    (24.33) 

or 

 O"(z) – 
α

 1+α z-1 O"(z) = 
1

 1+α  I"(z) 

or 

 O"(z)  = 
α

 1+α z-1 O"(z)  + 
1

 1+α  I"(z)       (24.34) 

 

     Fig 24.7 
 
As just noted above, the presence of a non-zero pole in H"(z) gives feedback.  
 
Defining β ≡ 1/α  = (Δt/RC), then in the regime in which the filter is accurate α >> 1 so β << 1, and then 
 

 
1

 1+α  = 
1/α

 1+1/α  = 
β

 1+β  ≈ β(1-β) ≈ β 

             (24.35) 

 
α

 1+α   = 
1

 1+1/α  = 
1

 1+β ≈ (1-β) ≈  e-β  ,  

 
which yields another form which sometimes appears in textbooks  (Lam pages 509 and 503) 
 

     Fig 24.8 
 
If we use these constants in (24.17) we get the rational polynomial transfer function 
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 H"(z)  = 
zβ

 z - e-β  

 
and then from (24.18) with hn = Δt g(tn),  
 

 g(tn)  = 
1

RC  e-nΔt/RC  =  
1

RC  e-tn/RC θ(n+ε)   .      (24.36) 

 
This is an accurate result even when α is not large (β not small), so although this is not the design that 
emerged from our small-Δt analysis in section (e) above, it is certainly a better design for a digital RC 
filter.  The two designs produce the same output for Δt << RC.   
 
(h) Other circuits 
 
Typical examples of IIR filters having feedback are serial scramblers and CRC generators. One thinks of 
the input sequence I"(z) as a huge polynomial in z, where the presence or absence of each power 
represents a 1 or a 0. That is, think of the incoming stream as a superposition of unit impulses with 
weights equal to the binary digits of the data stream. The transfer function H"(z) = 1/polynomial, so we 
write O"(z) = H"(z) I"(z) = I"(z)/polynomial. The output stream is then the quotient of polynomial 
division. One way to interpret the above discussion is as follows:  
 
 no poles →   polynomial multiplication →   no feedback →    FIR 
 
 poles with no zeros →   polynomial division →   feedback →   IIR 
 
 poles and zeros→   simultaneous polynomial multiplication and division →   feedback →   IIR 
 
This subject will be pursued more in a separate document. 
 
(Z Transform summary box on next page)   
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(i) Z Transform Summary  
 
          
 Z Transform          (24.37) 
 
 1. Let x(t) be any reasonable function.  
 
 2. Divide up the time axis into steps tn = n ∆t;  let T1 = ∆t and ω1 = 2π/T1.   
 
 3. We can think of samples xn = x(tn) for the above x(t). Alternatively, we can think of the 
      xn as some given sequence, and one could then construct an infinite number of functions 
           x(t) for which xn = x(tn).   
 
 4. In terms of x(t),  the Z Transform and its inverse are given by  
 

  X"(z)  = ∑
n = -∞

∞
  x(tn) z-n       (24.3)  

  x(tn) = 
1

2πi 
 ∫

C

  dz X"(z) zn-1  .      (24.4) 

   
    More generally, dispensing now with x(t) and using just xn,  
 

  X"(z)  = ∑
n = -∞

∞
  xn z-n       (24.3)  

  xn = 
1

2πi 
 ∫

C

  dz X"(z) zn-1      (24.4) 

 
    The contour C goes once counterclockwise around the unit circle in the z-plane.  
 
 5. The Z Transform diagonalizes any convolution sum : 
 

  an  = ∑
m = -∞

∞
  ∆t  bn-m cm   ⇔  A"(z) =  ∆t B"(z) C"(z)  (24.5)    

  an  = ∑
m = -∞

∞
  hn-m cm   ⇔  A"(z)  =  H"(z) C"(z)  (24.7) 

 
       where hn ≡ ∆t  bn   and  H"(z) =  ∆t B"(z) 
 
 6. The Z transform is related to the Digital Fourier Transform of box (23.5) by 
 

  X"(z)  ≡  
1
∆t  X'(ω) where z =  eiωΔt     (24.2) 
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25. Amplitude Modulated Pulse Trains 
 
In Section 14 we studied the spectrum of a simple pulse train made by superposing equal pulses xpulse(t) 
with spacing T1. We found that the Fourier Integral spectrum X(ω) of such a pulse train was given by an 
infinite sequence of delta function spikes with amplitudes determined by an envelope function c(ω) which 
is just a multiple of the spectrum of the pulse (summary box 14.12).  
 

 x(t)  = ∑
n = -∞

∞
   xpulse(t - tn)  tn = nT1    pulse train (14.1) 

 X(ω) = ∑
m = -∞

∞
   c(ω)  2π δ(ω - mω1)  = ∑

m = -∞

∞
   cm  2π δ(ω - mω1)  spectrum (14.9) 

 

 where c(ω) ≡  (1/T1)Xpulse(ω) =  (1/T1)  ∫
-∞

 ∞ dt xpulse(t) e-iωt   (14.8) and (1.1) 

 
The numbers cm = c(mω1) turned out to be exactly the complex Fourier Series coefficients.  
 
Later in Section 20 we studied an amplitude-modulated pulse train in which xpulse(t) = T1δ(t), and we 
took note of the continuous spectrum of such a pulse train,  
 

 x(t) = y(t) d(t) = ∑
n = -∞

∞
  yn T1δ(t - nT1) yn = y(nT1)     (20.3) 

 X(ω)  =  Y'(ω)  = ∑
m = -∞

∞
  Y(ω - mω1)  =   Y(ω) + ∑

m ≠ 0

 
  Y(ω - mω1) .   (20.7) 

 
where Y'(ω) was the Digital Fourier Transform of y(t) shown in items 3 and 4 of box (25.3).  
 
In this section we shall combine both these ideas to obtain an amplitude modulated pulse train with an 
arbitrary pulse shape xpulse(t). We continue to denote the amplitude modulated pulse train by x(t),  

 x(t)  =  ∑
n = -∞

∞
   yn xpulse(t -tn).        (25.1) 

What is the spectrum of this new pulse train?  To find out, we insert (25.1) into (1.1),  
 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt   =  ∫
-∞

 ∞ dt [ ∑
n = -∞

∞
  yn xpulse(t - tn)] e-iωt 

   = ∑
n = -∞

∞
   yn  ∫

-∞

 ∞ dt xpulse(t - tn)] e-iωt   = ∑
n = -∞

∞
   yn [ ∫

-∞

 ∞ dt' xpulse(t') e-iωt'] e+iωtn     // t' = t-tn 

 = ∑
n = -∞

∞
   yn Xpulse(ω) e+iωtn  = Xpulse(ω) ∑

n = -∞

∞
   yn e+iωtn  

 



  Chapter 3: Sampled Signals and Digital Transforms 

  90 

where we used (1.1) to recognize Xpulse(ω). Recall now the Digital Fourier Transform as summarized in 
the box (23.5).  From item 4 in that box, we can interpret the n sum above in this way  (Δt = T1)  
 

  ∑
n = -∞

∞
   yn e+iωtn  = 

1
T1

 Y'(ω)    = Y"(z)       (25.2) 

 
which says, apart from a constant factor, this sum is the Digital Fourier Transform of y(t). [In this and the 
following equations, we will try to show results in terms of both the Digital Fourier Transform Y'(ω) and 
the Z Transform Y"(z) = Y'(ω)/T1. ] 

From item 6 in that same box, we know that Y'(ω) = [  Y(ω)  + ∑
m ≠ 0

 
  Y(ω- mω1) ]. We conclude the above 

calculation of the spectrum X(ω) to find that, using the definition (14.8) of c(ω),  
 

 X(ω) = Xpulse(ω) 
1

T1
  Y'(ω)   = c(ω) Y'(ω)  = Xpulse(ω) Y"(z)  .    (25.3) 

 
Comparing this to (20.7) quoted just above, we see that the spectral effect of replacing the T1δ(t) pulse by 
xpulse(t) is the addition of the pulse spectrum c(ω) = Xpulse(ω)/T1 as an overall factor. We then recover 
the delta function result as a special case where c(ω) = T1/T1 = 1 as at the start of Section 20.  
 
Thus we arrive at this very significant result which deserves its own box:  
 

        
   Amplitude Modulated Pulse Train        (25.4) 

 x(t)  = ∑
n = -∞

∞
   yn  xpulse(t -tn)        (25.1)   

 X(ω)  =  c(ω) Y'(ω) =  c(ω) [ Y(ω) + ∑
m ≠ 0

 
   Y(ω - mω1)]  =  Xpulse(ω) Y"(z) (25.3)  

  c(ω)  =   (1/T1)Xpulse(ω) =  (1/T1)  ∫
-∞

 ∞ dt xpulse(t) e-iωt  (14.8) and (1.1) 

  Y'(ω) = T1Y"(z) =  T1 ∑
n = -∞

∞
  yn e-iωnT1   projection = transform  (23.5) 

 
 
The boxed result above is one of the holy grails of the spectral analysis of digital signals. Notice that by 
selecting yn to vanish outside some range, the box applies to both infinite and finite pulse trains.  
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Example 1:  A finite pulse train 
 
Consider this finite sequence of yn samples  
 

     Fig 25.1 
 
We can regard the red outline curve as an amplitude modulated pulse train whose pulse shape is a box of 
height A = 1 and width τ = T1.  The Fourier Integral Transform spectrum of this box from (9.2) is 
 
 Xpulse(ω) = T1 sinc(ωT1/2) .        (9.2) 
 
From box (25.4) the Fourier Integral Transform spectrum X(ω) of the pulse train is given by 
 
 X(ω)  =  (1/T1)Xpulse(ω)  { Y'(ω) }  = Xpulse(ω) [ Y'(ω)/T1]  

      = sinc(ωT1/2) { Y'(ω) }  = sinc(ωT1/2)  { T1 ∑
n = -∞

∞
  yn e-iωnT1 }     (25.5) 

where Y'(ω) is the Digital Fourier Transform of the sequence yn as shown in (23.5).  
  
Here is a Maple plot of | Y'(ω) |  with T1 = 1. 
 

 
 

        Fig 25.2 
 
where we see the expected image spectra at Nω1 = N2π. There is a strong DC component at ω = 0 and the 
peak there is the sum 19 of the yn values (all of which are positive) so X(0) = Y'(0) = 19 .  
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Next we show in red a plot of | X(ω) | from (25.5) for the finite pulse train,  
 

 

        Fig 25.3 
 
where the blue curve provides an outline of X(0) |sinc(ωT1/2)| . The red curve is the spectrum of the 
physical red analog signal shown in Fig 25.1 and there are no image spectra. The sinc function in this 
example crushes out the image spectra with its zeros.  
 
Now we shall attempt some reconstructions.  
 
First, we reconstruct the yn from Y'(ω) using the inversion formula in box (23.5),  
 

  yk =  
1
2π  ∫

-ω1/2

 ω1/2

 dω Y'(ω) e+iωkT1   expansion = inversion    (23.5) 

 

 
which are in fact the yn we started with.  
  
Second, we reconstruct the pulse train x(t) from X(ω) using the inversion formula (1.2), 
 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt  expansion = inverse transform   (1.2) 
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            Fig 25.4 
 
which replicates our starting figure. The reason for Re(s) is that that s has a tiny imaginary part ~ 10-9 
due to calculational error, and the plot routine requires a real function. Maple does the integral 
analytically as shown  (see (C.14) for signum ).  
 
Example 2:  The unit impulse and the sinc sum rule 
 
Even the simplest case is interesting. The yn sequence is taken as a unit impulse scaled by y0 
 

          Fig 25.5 
 
 Xpulse(ω) = T1 sinc(ωT1/2) . // for box of unit height     (9.2) 
 
From box (25.4) the Fourier Integral Transform spectrum X(ω) of this "pulse train" is given by 
 
 X(ω)  =  (1/T1)Xpulse(ω)  { Y'(ω) } 

      = sinc(ωT1/2)  { T1 ∑
n = -∞

∞
  yn e-iωnT1 } 

      = sinc(ωT1/2)  { T1y0 } =  sinc[π(ω/ω1)]  { T1y0 }  // = Y(ω)  (25.6) 
 
so in this example Y'(ω) = T1y0.  If we regard the red plot as y(t), then X(ω) = Y(ω), the Fourier Integral 
Transform of y(t). They are the same since this pulse train has only one pulse.  
 A plot of  |X(ω)|  =  |Y(ω)| has a familiar look (T1= 1, ω1= 2π, y0 = 1) :  
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         Fig 25.6 
 
We have just noted that Y'(ω) ≡ y0T1 = 1. How exactly does the image spectrum equation in box (23.5) 
item 6 , namely 
 
 Y'(ω) = [  Y(ω)  + Σm≠0Y(ω- mω1) ] ,        (25.7) 
 
work out?  First, we plot the right side of (25.7)  limiting the sum range to m = -100 to 100 : 
 

   Fig 25.7 
 
It appears that the shifted sinc functions are adding up to produce the constant Y'(ω) = 1. In terms of the 
math, this must mean that 
 

 Y'(ω) = ∑
m = -∞

∞
  Y(ω - mω1)  = yo T1 ∑

m = -∞

∞
   sinc[π(ω/ω1 - m)]  = yoT1    (25.8)  

 
which implies the following unusual sum rule, valid for any real x  :  

 ∑
m = -∞

∞
   sinc[π(x-m)] =  1 .           (25.9)  
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This result is sometimes quoted with x = 0 but it is in fact valid for any x. We have in effect proven the 
sum rule with the above analysis, but as usual we would like to find verification. First process the sum as 
follows,  
 

 ∑
m = -∞

∞
   sinc[π(x-m)]  = ∑

m = -∞

∞
   

sin[π(x-m)]
 π(x-m)   = (1/π) sin[πx] ∑

m = -∞

∞
   

(-1)m

 x-m    . 

 
The sum on the right can be further processed,  
 

 ∑
m = -∞

∞
   

(-1)m

 x-m  =  
1
x   +  [ ∑

m = -∞

-1
  + ∑

m = 1

∞
  ]  

(-1)m

 x-m   = 
1
x   + 2x ∑

m = 1

∞
    

(-1)m

x2-m2  .  

 
According to Gradshteyn and Ryzhik 142.3 (page 44),  
 

 
 
we may replace 
 

 
1
x   + 2x ∑

m = 1

∞
    

(-1)m

x2-m2    = π csc(πx) 

 
and then we find that 
 

 ∑
m = -∞

∞
   sinc[π(x-m)]  =  (1/π) sin[πx]  π csc(πx)  = 1  

 
which then verifies the sum rule (25.9).  
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26. A simple application: Aperture Correction 
 
The output of a digital system usually involves a D/A converter followed by an analog post-filter. Let us 
assume that this system is attempting to reproduce some reasonable analog waveform y(t). Assume that 
each converted value is held as charge on a capacitor for some portion τ of the conversion period T1, and 
then the capacitor charge is instantly dumped to ground for the remainder of the period. Period τ is called 
the aperture. In this way, we produce a signal x(t) that is a sequence of square pulses modulated by the 
values y(tn) :  
 

 
 
 Figure 26.1. The smooth curve is y(t), the pulse train is x(t). Spacing is ∆t = T1. Width  Fig 26.1 
 of each pulse is τ (the aperture), so duty cycle is τ/T1.  
 
What is the spectrum of x(t)? It is an amplitude modulated pulse train, so according to (25.3) the spectrum 
of x(t) is  
 
 X(ω)  =  (1/T1) Xpulse(ω) Y'(ω)  .        (26.1) 
 
The pulse xpulse(t) is a square pulse of unit height, width τ, and with its left edge aligned with t=0. We 
know the spectrum of this pulse from (9.2), but by (12.1) we must add a time-shift phase exp(-iωτ/2) 
because we are translating our earlier pulse τ/2 units to the right to make the left edge line up at t=0. Thus, 
from (9.2) and (12.1),  
 
 Xpulse(ω) = τ sinc(ωτ/2) e-iωτ/2        (26.2) 
 
so the spectrum of x(t) is 
 
 X(ω)  =  (τ/T1) sinc(ωτ/2) exp(-iωτ/2) Y'(ω)  .      (26.3) 
 
The magnitude of X(ω) is the product of two functions which we now illustrate, where the grey humps 
represent Y(ω) and its images which combine to make Y'(ω), whatever it might be,  

      
       Figure 26.2. The humps are |Y'(ω)| and the red curve is (τ/T1) |sinc(ωτ/2)|.   Fig 26.2 
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Presumably our low pass analog post-filter is going to select out the portion of the spectrum indicated by 
the dotted lines in Figure 26.2. In this region we have,  
 
 X(ω) = (τ/T1) sinc(ωτ/2) exp(-iωτ/2) Y(ω),        (26.4)  
 
where Y(ω) is the main spectrum of Y'(ω). The factor (τ/T1)sinc(ωτ/2) represents an undesired magnitude 
distortion of the spectrum X(ω) due to the aperture τ. The phase φ(ω) = -iωτ/2 is a harmless linear phase 
which just means the whole signal is delayed by time τ/2, as shown in Section 21 (b).  
 
The distortion is at its worst when the aperture τ fills the entire period T1, in which case the signal in 
Figure 26.1 looks like a traditional stepwise fit to y(t). The distortion is worst because the zeros of 
sinc(ωτ/2) are at ωm = m (2π/τ), so they are moved in as close as possible when τ is as large as possible, τ 
= T1.  
 
The distortion can be reduced by making τ as small as practicable. In this case, the zeros move out, and 
the central hump of sinc(ωτ/2) is broad, so its drop-off during Y(ω) is minimized. Of course the amplitude 
(τ/T1) of X(ω) also drops off as τ is made small, so there is a tradeoff.  
 
In any event, there is still some distortion represented by sinc(ωτ/2) varying in the dotted region in Figure 
26.2. Usually one attempts to correct for this aperture distortion by building into the analog post-filter an 
exactly compensating boost at frequencies near the cutoff region of the filter.  
 
Thus, if the post-filter would normally be some F(ω) cutting off in the region of the second dotted line in 
Figure 26.2, a correcting filter would have the spectrum F(ω)/sinc(ωτ/2). This filter needs to know the 
aperture time τ in addition to the cutoff frequency. Such a filter is said to have "sine x over x correction".  
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27. The Discrete Fourier Transform  
 
Up to this point, xpulse(t) has always been considered a continuous function of time t. A simple pulse 
train was formed as x(t) = Σn xpulse(t-tn) and an amplitude modulated pulse train as Σn yn xpulse(t-tn) 
where tn = nT1. Now for the first time we wish to consider a digital approximation to xpulse(t). That is 
the main subject of this section, and we shall develop it in analogy to Section 22 for the Digital Fourier 
Transform. 
 
In a slight reversal of our normal order of doing things, in section (a) we shall develop the Discrete 
Fourier Transform (DFT) for a pulse train, then in section (b) we develop the Discrete Fourier Transform 
for an isolated pulse, this latter being the traditional form of the DFT.  
 
(a) The Discrete Fourier Transform for a Simple Pulse Train x(t)  
 
Recall from Section 15 the discussion of the Fourier Series Transform with complex coefficients cm. This 
was summarized in box (15.12) from which we quote,  
 
Fourier Series Transform:  (complex form)  
  

 cm ≡ (1/T1)  ∫
-∞

 ∞  dt xpulse(t) e-imω1t  = (1/T1)  ∫
0

 T1  dt x(t) e-imω1t  (14.16)  (27.1) 

 x(t)  = ∑
n = -∞

∞
  xpulse(t - nT1)  =  ∑

m = -∞

∞
   cm e+imω1t   (14.1) + (15.9)  (27.2)  

 
Here, x(t) is an infinite pulse train created by superposing pulses xpulse(t) at spacing T1. Thus, x(t) is a 
periodic function with period T1.  
 
We wish now to redefine our concept of interval ∆t. In our previous discussion, we set ∆t = T1. Here we 
wish instead to break up each interval T1 into N pieces of size ∆t, so now we have: 
 
 ∆t = T1/N                 ω1 = (2π/T1) = 2π/(N∆t)         
 T1 = N ∆t   (2π/N) = ω1Δt        
 tn = n∆t   ω1tn = n ω1Δt   = n (2π/N) .      (27.3) 
 
Here tn = n∆t represents a sequence of sample times for x(t). We still have our same periodic pulse train 
as in (14.1) which we then evaluate at discrete times t = tn to get (27.5). 
 

 x(t)  = ∑
m = -∞

∞
   xpulse(t-mT1) .      (14.1)  (27.4) 

    

 x(tn)  = ∑
m = -∞

∞
   xpulse(tn-mT1)  .        (27.5) 
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There are N points tn per period T1. If we rewrite (27.2) evaluated at these points, taking ω1 from (27.3) 
and setting t = tn = n∆t , we get 
 

 x(tn)  = ∑
m = -∞

∞
  cm e+imn(2π/N) .        (27.6) 

 
So far we haven't really done anything except examine x(t) at some sample points.  
 
Following an approach similar to that of Section 22, consider now the following non-equation, 
 

 cm  ≠   (1/T1) ∑
n = -∞

∞
   ∆t xpulse(tn) e-imω1tn .       (27.7) 

      
Only in the limit ∆t → 0 does (27.7) become an equality, since it then reproduces (27.1). So let's define 
something new called c'm that is equal to the right side of (27.7) for a specific finite Δt = T1/N :  
 

 c'm  ≡ (1/T1) ∑
n = -∞

∞
   ∆t xpulse(tn) e-imω1tn .      (27.8) 

    
Using (27.3) this becomes  
 

 c'm  ≡  (1/N) ∑
n = -∞

∞
  xpulse(tn) e-imn(2π/N) .  projection = transform   (27.9) 

 
Recall that xpulse(t) is usually taken to be a pulse which vanishes outside a range of width T1, and in this 
case the sum in (27.9) has only N non-vanishing terms.  
 
In the Fourier Series world, one can have any number of unique cm coefficients. For the c'm in (27.9) this 
is no longer true. There are in fact only N unique values of c'm because they keep repeating. This is 
because (27.9) implies that 
 
 c'm+kN = c'm   for any integer k       (27.10) 
 
due to the fact that e-i(kN)n(2π/N) = e-ikn(2π) = 1.  
 
So c'm is a periodic digital sequence of period N. 
 
We claim now (to be proven in section (b) below) that the correct expansion of pulse train x(t) to 
accompany projection (27.9) is the following: 
 

 x(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)  .    expansion = inverse transform   (27.11) 
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Due to the periodicity of c'm shown in (27.10), the expansion (27.11) can also be written as 
 

 x(tn)  = 

⎩⎪
⎨
⎪⎧   ∑

m = -N/2

N/2-1
    c'm e+imn(2π/N)          N even

 ∑
m = -(N-1)/2

(N-1)/2
       c'm e+imn(2π/N)       N odd

               (27.12) 

 
Proof of (27.12):  For N even write the claimed result separating off the negative part of the series,  
 

 ∑
m = -N/2

N/2-1
    c'm e+imn(2π/N)  = ∑

m = -N/2

-1
    c'm e+imn(2π/N)  + ∑

m = 0

N/2-1
    c'm e+imn(2π/N)  . 

 
In the first term replace m by m' = m+N to get 
 

 ∑
m = -N/2

-1
    c'm e+imn(2π/N)  = ∑

m' = N/2

N-1
  c'm'-N e+i(m'-N)n(2π/N)   = ∑

m' = N/2

N-1
   c'm' e+i(m')n(2π/N) 

 
where we have used (27.10) to say c'm'-N = c'm' and e+i(-N)n(2π/N) = 1. Changing m'→m we then write 
the our two-term sum as 
 

 ∑
m = -N/2

N/2-1
    c'm e+imn(2π/N)  = ∑

m = N/2

N-1
   c'm e+imn(2π/N)  + ∑

m = 0

N/2-1
    c'm e+imn(2π/N)  = ∑

m = 0

N-1
  c'm e+imn(2π/N)  . 

 
But this the sum in (27.11), so we have proven (27.12) for N even. The proof for odd N is similar and it is 
left to the reader.  
 
We can now verify that our new transform approaches the Fourier Series Transform (27.1) and (27.2) in 
the limit N→∞. The first line below is the large N (small Δt) limit of (27.9), while the second line is the 
limit of (27.12) for even or odd N where N>>1 ( use is made of the relations in (27.3) and limN→∞ tn  = 
limN→∞ (nΔt) = t) : 

 limN→∞ c'm  =  limN→∞ {(1/T1) ∑
n = -∞

∞
  ∆t xpulse(tn) e-imω1tn}  = (1/T1) ∫

-∞

 ∞  xpulse(t) e-imω1t   = cm 

 limN→∞  x(tn) =  limN→∞ { ∑
m = -N/2

N/2
    c'm e+imω1tn}  = ∑

m = -∞

∞
   cm e+imω1t   = x(t) , 

  
This new transform pair (27.9) and (27.11) we shall call the Discrete Fourier Transform of a Pulse 
Train, as opposed to the Fourier Series Transform pair given in (27.1) and (27.2). We reserve the term 
Discrete Fourier Transform to refer to the transform of an isolated pulse. As we shall see in section (c) 
below, for this normal DFT, the sum in (27.9) becomes finite.    
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In the Discrete Fourier Transform, time is "discrete", only tn appear, and therefore we only see functions 
evaluated at these discrete time points,  
 
  xn  ≡ x(tn)  
  xpulse,n  ≡  xpulse(tn)  
 
In contrast, the Fourier Series Transform has a continuous time variable t and functions xpulse(t) and 
pulse train x(t) appear.   
 
Both transforms have discrete spectra as indicated by cm and c'm and this is because in both cases the pulse 
train is a periodic function.  
 
Just as a reminder, with the Digital Fourier Transform we dealt with sample sequences like yn = y(tn) =  
y(nT1) where T1 was the spacing between pulses composing a pulse train. In such a sequence, there is 
only one sample per T1 period. In contrast, with our current Discrete Fourier Transform discussion, yn = 
y(tn) = y(nT1/N) and there are N samples per T1 time period. In both cases one could argue that the 
sequence is a set of digital or discrete values, so the transform names are somewhat arbitrary. 
 
(b) Proof of the Discrete Fourier Transform for a Simple Pulse Train x(t)  
 
To show this transform really works, we insert (27.9) for c'm into (27.11),  
 

 x(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N) =  ∑

m = 0

N-1
  [(1/N) ∑

k = -∞

∞
  xpulse(tk) e-imk(2π/N)] e+imn(2π/N) 

 

  =   (1/N) ∑
k = -∞

∞
  xpulse(tk)  ∑

m = 0

N-1
   e+im(2π/N)(n-k)  .     (27.13) 

 
We now quote an obscure identity proven in Appendix B which says 
 

 ∑
m = 0

N-1
  e+ims(2π/N)  =  N ∑

m = -∞

∞
  δs,mN  N > 0  s = integer   .   (B.1) 

 
This is a discrete version (s = integer) of (13.2) (s = real) which we quote for comparison 
 

 ∑
m = -∞

∞
  eims = ∑

m = -∞

∞
  2πδ(s - 2πm)  -∞  < s < ∞  .    (13.2) 

  
Setting s = n-k, (B.1) says  [ since δn-k,mN  = δk,n-mN ]  
 

  ∑
m = 0

N-1
  e+im(2π/N)(n-k)   =  N ∑

m = -∞

∞
  δk,n-mN  .       (27.14) 
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Then we find that 
 

 x(tn)  = (1/N) ∑
k = -∞

∞
  xpulse(tk)  N ∑

m = -∞

∞
  δk,n-mN  = ∑

m = -∞

∞
    ∑

k = -∞

∞
  xpulse(tk) δk,n-mN 

   = ∑
m = -∞

∞
   xpulse(tn-mN) =  ∑

m = -∞

∞
   xpulse(tn - mT1)  .      (27.15) 

 
Since this reproduces the pulse train (27.5), we conclude that indeed (27.11) is the expansion that 
accompanies the projection (27.9).   
 
At this point, we make a box to summarize the Discrete Fourier Transform of a simple pulse train:  
 
          
 Discrete Fourier Transform of a Simple Pulse Train     (27.16) 
 
 1. Let xpulse(t) be any reasonable pulse. Construct a simple pulse train x(t) with spacing T1: 
 

  x(t)  = ∑
n = -∞

∞
   xpulse(t - nT1) ⇒   x(t + mT1) = x(t)   (27.5) 

 
 By its construction, x(t) is periodic with period T1. If x(t) is a known periodic function of 
      period T1, a candidate for xpulse(t) is x(t) over any one period (and zero elsewhere).  
 
 2. Break up each T1 interval into N steps of width ∆t = T1/N. Let tn = n∆t  = (n/N)T1 .  
 
 3. Define the Discrete Fourier Transform coefficients c'm by this projection = transform: 
 

  c'm  ≡  (1/N) ∑
n = -∞

∞
  xpulse(tn) e-imn(2π/N) m = integer    (27.9) 

 
 Only N of these are unique because c'm is periodic in index m with period N: 
 
  c'[m+nN] = c'm   n = any integer      (27.10) 
 
 4. The pulse train at sample points tn is then given by this expansion = inversion:  
 

  x(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)           (27.11) but see also (27.12) 

 
 From this last result we may confirm that x(tn + mT1) = x(tn) so x is indeed periodic.  
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(c) The Discrete Fourier Transform for an Arbitrary Pulse 
 
The results of box (27.16) apply to any sampled pulse xpulse(t) . We could consider, for example, the set 
of xpulse(tn) functions which are non-zero only for tn = nΔt lying inside some limited temporal range 
indicated by A ≤ n ≤ B. For such functions (27.8) will have the form, 
 

 c'm  ≡  (1/N) ∑
n = A

B
  xpulse(tn) e-imn(2π/N) .        (27.17) 

 
The inversion formula continues to be (27.11) 
 

 x(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)  .        (27.11) 

 
If the range (A-B)Δt > T1, the above stated transform is valid, but the pulse xpulse(tn) cannot in this case 
have an arbitrary shape. This is because (27.11) forces x(tn + T1) = x(tn), meaning x(t) is periodic.  For 
example, if  (A-B)Δt  ≈  1.3 T1, then the portion of xpulse(tn) in (T1, 1.3T1) must be a replication of the 
portion of xpulse(tn) in (0, 0.3T1). If we want a DFT pulse transform that allows for arbitrary pulse shape, 
we must restrict A and B so that (A-B)Δt ≤ T1. We can of course consider pulses which are restricted to 
(A-B)Δt < T1 to be special cases of pulses defined on (A-B)Δt = T1, where we just add zero padding to 
arrive at the interval T1.  
 Therefore we restrict A,B so that (A-B)Δt = T1 or  (A-B) = T1/Δt = N.  
 In this way, we arrive at this special case of the transform of the box (27.16) which applies to an 
arbitrary pulse of width T1 (that is, a pulse having only N discrete values)  
 

 c'm  ≡  (1/N) ∑
n = 0

N-1
  xpulse(tn) e-imn(2π/N)     m = 0,1...N-1     (27.18) 

        // (2π/N)  = ω1Δt 

 xpulse(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)  n = 0,1,...N-1  (27.11)   (27.19) 

 
This is the official Discrete Fourier Transform (DFT). Due to the periodicity property (27.10), the sum 
in (27.17) could be taken over any set of N adjacent steps, and without loss of generality we take these N 
steps to be 0,1,...N-1. If one were to regard the pulse as being translated to some other set of N steps like n 
= -3,-2,-1,0,1,... N-4, the coefficients c'm would be exactly the same apart from a simple m-dependent 
phase. For example, let x'pulse be the translated pulse. Then,  
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 d'm ≡  (1/N) ∑
n = -3

N-4
  x'pulse(tn) e-imn(2π/N)  = (1/N) ∑

n = -3

N-4
  xpulse(tn-3) e-imn(2π/N) 

  = (1/N) ∑
n' = 0

N-1
  xpulse(tn') e-im(n'-3)(2π/N)  // n' = n+3 

  = e+i3m(2π/N) { (1/N) ∑
n' = 0

N-1
  xpulse(tn') e-imn(2π/N)}   = e+i3m(2π/N) c'm 

 
  =  e+i3(mω1)Δt c'm         (27.20) 
 
This result is a reflection in the current context of the time-shift rule (12.1) which we restate here as 
 
 x(t + 3Δt) ↔ e+i3ωΔt X(ω)        (12.1) 
 
Note that c'm refers to the spectral frequency mω1.  
  
We now summarize the DFT in a box:  
 
  
 Discrete Fourier Transform for an Arbitrary Pulse     (27.21) 
 
 1. Let xpulse(t) be an arbitrary reasonable pulse defined for t in (0,T1).  
 
 2. Break up T1 into N steps of width ∆t = T1/N. These relationships hold 
 
  ∆t = T1/N             ω1 ≡ (2π/T1) = 2π/(N∆t)         
  T1 = N ∆t  (2π/N) = ω1Δt        
  tn = n∆t   ω1tn = n ω1Δt   = n (2π/N)    (27.3) 
 
 Thus, the sequence values of interest are xpulse(tn)  for n = 0,1,2...N-1.  
 
 3. Define the Discrete Fourier coefficients c'm by this projection = transform: 
 

  c'm  ≡  (1/N) ∑
n = 0

N-1
  xpulse(tn) e-imn(2π/N)     m = 0,1...N-1   (27.18) 

 
 4. The accompanying expansion = inverse transform is given by  
 

  xpulse(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)  n = 0,1,...N-1   (27.19) 
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In the above box one could of course replace xpulse(tn) by some generic function x(tn) defined on (0,T1), 
and one could go further and write x(tn) as xn to get this more common statement of the DFT:  
 

 c'm  ≡  (A/N) ∑
n = 0

N-1
  xn e-imn(2π/N)    m = 0,1...N-1      projection = transform 

 xn  = (1/A) ∑
m = 0

N-1
  c'm e+imn(2π/N) n = 0,1,...N-1      expansion = inverse transform (27.22) 

 
Here we have added an arbitrary constant A to the first equation and 1/A to the second which maintains 
the validity of the DFT transform pair. If one takes A=N, the 1/N factor moves to the second equation. 
Another choice is A = N  to make the two equations symmetrical. The transform pair is also valid if the 
phase signs are switched, just as with the Fourier Integral Transform. This would be associated with a 
version of (B.1) having the opposite phase sign obtained by just complex conjugating (B.1).  
 
(d) Comments on the Discrete Fourier Transform 
 
One might wonder about the purpose of the Discrete Fourier Transform of a Pulse Train, and its relation 
to earlier transforms. This can be illuminated by a simple set of pictures. 
 
First, go back to the Section 2 analysis of a making a pulse train x(t) by superposing shifted copies of 
pulse xpulse(t). Imagine, as in the discussion at the end of Section 14, that xpulse(t) is a Gaussian which 
of necessity extends beyond the domain of one period T1. Here is a picture of this pulse: 
 

          
   Figure 27.1. The pulse xpulse(t). Bars are distance T1 apart.    Fig 27.1 
 
If we now superpose these pulses, we get the following pulse train x(t), as was shown in Fig 14.2,  
 

  
    Figure 27.2. The function x(t) is the heavy curve. It is the sum of the gaussians.   Fig 27.2 
 
This picture gives us a chance to repeat a point made earlier, namely that xpulse(t) is not unique. One 
could use instead a portion of the heavy curve between any adjacent pair of bars.  
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The heavy curve is our pulse train, and we have chosen the most complicated case, that where the pulses 
overlap. Typically they do not overlap.  
 
Now, the heavy curve is a periodic continuous function of time x(t), and it has in principle an infinite set 
of Fourier Series coefficients cm. These coefficients are really determined from the underlying pulse 
xpulse(t). In general, it takes an infinite number of time points to represent the smooth function xpulse(t), 
so there are an infinite number of coefficients cm in the "transformed space" where these coefficients live.  
 
We know that the transform of the Gaussian xpulse(t) is a Gaussian Xpulse(ω), and we know that the 
Fourier coefficients are given by 
 
 cm = (1/T1) Xpulse(mω1) where ω1 = 2π/T1 .  
 
One can visualize (see Fig 14.1) the infinite set of the cm as tracing the envelope of this gaussian 
Xpulse(ω). Of course it may happen that many of the cm vanish if xpulse(t) has simple harmonic content. 
The point is that there could be an infinite number of cm.  
 
This infinitude matches the infinitude of real points along the pulse xpulse(t). If we consider the regular 
Fourier integral spectrum Xpulse(ω) in its own right, we again have an infinitude of complex numbers 
needed to describe the pulse in the transformed space, subject to X(-ω) = [ X(ω)]* of (7.3) which knocks 
down this complex double infinity to a single infinity, balancing the time side of the transform.  
 
Having said all this, we are now ready to move from analog to digital. Consider the same pulse xpulse(t) 
evaluated only at the discrete points tn, so the pulse is now represented by this sequence of numbers: 
 
  xpulse(tn)   tn = n ∆t 
 
and we assume that there are N sample points in each period T1. In our figures below, N = 8, and we 
approximate the tail of the Gaussian with a few extra points.  
 
Here then is a picture of the set of numbers xpulse(tn) which describe our pulse:  
 

    
   Figure 27.3. Pulse is now a set of 18 numbers xn(pulse) . N = 8      Fig 27.3 
 
 
Now as before, build a digital pulse train by superposing pulses:  
 
 



  Chapter 3: Sampled Signals and Digital Transforms 

  107 

  
            Figure 27.4. Digital pulse train represented by the fat hatched bars.    Fig 27.4 
 
In this figure, the thin dark bars are the numbers which describe the pulse. The fat hatched bars represent 
the sum of the thin bars -- remember that we have overlap here.  
 
Note that the resulting sequence -- the fat bars -- form a periodic sequence, just as we had a periodic 
function given by the heavy curve in Figure 27.2. Note also that again we could have used an "equivalent 
pulse sequence" here consisting of just the set of 8 fat bars in one interval.  
 
Thus, although our original pulse contained 18 numbers, the minimal pulse contains only 8 numbers. If 
we now compute the Discrete Fourier Transform coefficients cm' according to the formula in box (26.15),  
 

 c'm  ≡  (1/N) ∑
n = -∞

∞
   xpulse(tn) e-imn(2π/N) 

 
we find that only 8 of the c'm are unique because of the translation rule shown in the same box. Select 
those with m = 0,1,2,3,4,5,6,7. We should be happy to find that it takes only 8 numbers in the transform 
space (where the cm' live) to represent the 8 numbers in the time domain which represented our pulse in its 
minimal representation -- the 8 fat bars in period T1. For this minimal pulse, there are only 8 non-
vanishing terms in the above sum. Thus, the cm' are related to the eight fat bar heights by a set of numbers 
which form an 8x8 symmetric matrix, namely 
 
 Mmn = (1/N) e-imn(2π/N) 
 
in terms of which we have 
 
 c'm  = Σm Mmn xpulse(tn)   
or 
 c' = M xpulse    (27.18)  
 xpulse = M-1 c'  = N M* c'   (27.19)  
 

Of the 64 matrix elements of M, only 8 are unique, and these 8 elements lie equally spaced on a circle of 
radius (1/N) in the complex plane.   

 
As a possible application of the Discrete Fourier Transform (DFT), consider some sort of digital circuit 
that puts out a set of numbers that repeat after every N numbers. Perhaps this is what a scrambler does 
with a constant input. In this case, one can think of the set of N numbers as tracing the envelope of a pulse 
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xpulse(t). The appropriate "frequency domain" transform of this repeating sequence of numbers is the 
DFT. In the frequency domain we get a finite set of N numbers cm' as the transform.  
 
Just as with regular Fourier series coefficients, the DFT coefficients c'm are a measure of the frequency 
content of the signal. Recall that the pulse train x(t) is mapped out by: 
 

 x(tn) = ∑
m = 0

N-1
   c'm e+imn(2π/N) = ∑

m = 0

N-1
   c'm e+imω1tn  ω1 = (2π/T1) 

 

One should think of n taking lots of values and tracing out the envelope of the function x(t). Clearly, 
coefficient c'm is the weight of frequency component mω1. So c'0 measures the DC component, and c'1 
measures the amount of frequency component ω1 and so on.  
 
There is a limit on how high a frequency component one can have. Consider a sine wave with period ∆t = 
the sample spacing. It would have the same value at every sample point, and would thus show up in the 
DC component. The frequency corresponding to period ∆t is ωN = Nω1. This is why c'N = c'0. In a similar 
fashion, potential frequencies ωn with n>N are also "aliased" down into lower frequencies according to 
the translation rule for the c'm. Thus, the highest frequency we can really have is (N-1)ω1.  
 
So this gives a reasonable "Fourier explanation" of why there are a finite number of distinct c'm 
coefficients involved in the spectral expansion above for x(tn).  
 
We repeat one more time an important fact stressed earlier: as N (the number of sample points per T1 
interval) increases, the number of DFT coefficients c'm increases as well, and these c'm becomes closer and 
closer to the Fourier Series coefficients cm. In the limit N → ∞,  c'm = cm, and the DFT and the Fourier 
Series exactly align.  
 
For finite N, the c'm differ from the cm in exactly the same way that the area under a stepwise 
approximated curve differs from the area under the smooth curve. This fact follows directly from the 
definitions of the c'm and cm.  
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Chapter 4: Some Practical Topics 
 
This chapter applies the results of earlier chapters to a few simple test situations and applications. By 
providing some wordy discussion of seemingly mundane topics, we attempt to prop up our so-far mostly 
mathematical approach to Fourier analysis. It is in matters like these that one's understanding is really put 
to the test.  
 
28. Do FIR filters have linear phase?  
 
We shall show in two different ways that a FIR filter has linear phase provided it has symmetric 
coefficients. The first method is direct, the second more intuitive.  
 
Method 1 
 
We saw in (21.5) how a digital filter is represented by a set of numbers bn. Recall the Z transform 
projection,  
 

 B"(z) = ∑
n = -∞

∞
  bn z-n .   // FIR filter 

 
Since z lies on the unit circle, we may represent it as z = eiθ as in (24.1). Thus, 
 

 B"(eiθ) = ∑
n = -∞

∞
  bn e-inθ  .   // FIR filter 

 
Assume that bn is a finite set b0, b1, b2....bN.  Then,  
 

 B"(z) = ∑
n = 0

N-1
  bn z-n  = b0 + b1 z-1 + b2 z-2  + ... bN-1z-(N-1) .    (28.1) 

 

Assume next that the set of bn is "symmetric" such that b0 = bN-1, b1 = bN-2 and so on. 
 
It is not hard to obtain our conclusion using general N, but it is a lot easier to see what is 
going on if we pick some sample N values.  
 
Let N = 5. Then we have 
 

 B"(z) = ∑
n = 0

4
  bn z-n  = b0 + b1 z-1 + b2 z-2  + b3z-3  + b4z-4 

       = b0 + b1 z-1 + b2 z-2  + b1z-3  + b0z-4  // assume symmetric 
      = z-2 (b0z2 + b1 z + b2  + b1z-1  + b0z-2) 
      = z-2 [b0(z2 + z-2) +  b1(z +z-1) +  b2]  . 
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Now set z = eiθ and continue along,  
 
      = e-2iθ [b0(e2iθ + e-2iθ) +  b1(eiθ + e-iθ) +  b2] 
      = 2e-2iθ [b0cos(2θ) +  b1cos(θ) +  b2]  .  2 = (N-1)/2 
 
The phase of this filter is -2θ. If we used N = 7, a repeat of the above analysis would give 
 
 B"(z)  = 2e-3iθ [b0cos(3θ) +  b1cos(2θ) +  b2cos(θ)  + b3]  3 = (N-1)/2 
 
with a phase of -3θ. For a general odd value of N, the z phase comes out being -i[(N-1)/2]θ .  
 
Now consider even values of N.  For N = 4 we have 
 

 B"(z) = ∑
n = 0

3
  bn z-n  = b0 + b1 z-1 + b1 z-2  + b0z-3 

    = z-1.5 (  b0z1.5 + b1 z.5 + b1 z-.5  + b0z-1.5) 
    = z-1.5 [ b0(z1.5 + z-1.5)  + b1 (z.5 + z-.5)] 
   = 2e-i1.5θ[ b0cos(1.5θ)  + b1cos(0.5θ)]   .   1.5 = (N-1)/2 
 
For N = 6 the result would be 
 
   = 2e-i2.5θ[ b0cos(2.5θ)  + b1cos(1.5θ) + b2 cos(0.5θ)]  2.5 = (N-1)/2  . 
 
For a general even value of N, the phase comes out being -[(N-1)/2]θ which is the same as the phase for 
the general odd N value. Thus we have shown that, for general N, and using θ = ωΔt from (24.1),  
 
  B"(z)  = 2 e-iωΔt(N-1)/2  [ real sum of cosine terms ]      (28.2) 
 
According to the definition of "filter phase" in (21.14), our filter B"(z) has 
 
 phase = + [(N-1)/2] Δt ω .          (28.3) 
 
Since this phase is linear in ω, our symmetric-coefficient digital FIR filter has "linear phase". Using the 
same definition of group delay used for an analog filter in (21.19), the group delay for such a linear phase 
digital filter is  
 
 τd = d(phase)/dω =  Δt(N-1)/2  = a constant       (28.4) 
 
so we expect a symmetric FIR filter to exhibit good fidelity when it acts on an input signal.  
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Method 2 
 
Consider the Fourier integral spectrum X(ω) of a real-valued pulse x(t) that is symmetrical and centered at 
t=0. Since x(-t) = x(t), we can fold the negative portion of the dt integration in (1.1) over to the positive 
side. Doing this gives x(t) times e-iωt + e+iωt = 2cos(ωt). Thus, everything is real, and X(ω) must 
therefore be real. We have already seen several examples of this: δ(t) gives X(ω) = 1, a square pulse gives 
(Aτ) sinc(ωτ/2).  
 If we displace the pulse to the right by some amount of time M∆t, then X(ω) is no longer real, it picks 
up the usual shift phase from (12.1) which here would be exp(-iωM∆t).  
 We now construct a digital filter O"(z) = B"(z)I"(z). The input will be a unit pulse at time 0 so in(t) = 
δn,0 and therefore I"(z) = 1 from (24.8) and (24.9) with m=0. The output of the filter is then O"(z) = 
B"(z). Consider an N=3 filter with B"(z) = a + bz-1 + az-2. This corresponds to output signal o(0) = a, 
o(∆t) = b and o(2∆t) = a. Since this is a symmetric pulse centered at t = Δt, we know from the previous 
paragraph that the spectrum of this pulse has a phase  e-iΔt relative to the real spectrum of a similar pulse 
centered at t = 0. Next, consider an N=4 filter with coefficients a,b,b,a. The output will be sequence 
a,b,b,a centered at t = (3/2)Δt, so its spectral phase will be e-i(3/2)Δt relative to that of similar pulse 
centered at t = 0. In both cases, we see that the output pulse is centered at t = [(N-1)/2] Δt, so this must be 
the group delay of a symmetric filter with N coefficients. The filter phase must then be the function  φ = 
[(N-1)/2] Δt ω, which is linear in ω, in agreement with the result of the more formal Method 1. 
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29. A Simple Digital Low-Pass Filter 
 
This section describes a particular implementation of a digital low-pass filter. There is a whole world of 
such filters, and this design is meant only as an illustration. In Section 30 the filter described here will be 
used as a 4x oversampling interpolation filter for a D/A converter output design.  
 
The ideal "brick wall" filter has this spectrum,  
 

               Fig 29.1 
 
Recall our box-shaped pulse in the time domain (height 1, width τ) and its spectrum 
 
 x(t) = [ θ(t + τ/2) - θ(t - τ/2) ]         (9.1) 
      
 X(ω) = τ sinc(ωτ/2) .         (9.2) 
 
For this x(t), (1.1) gives the X(ω) shown. If we try X(ω) =  [ θ(ω + ωc) - θ(ω - ωc) ] in (1.2), we know the 
result will be (1/2π) * 2ωc sinc(tωc), just swapping the variables t↔ω and τ/2→ωc. We thus obtain the 
following brick wall filter B(ω) of Fig 29.1 and it associated time-domain pulse shape b(t),  
 
 B(ω) =  [ θ(ω + ωc) - θ(ω - ωc) ]        (29.1) 
 
 b(t)  =  (π/ωc) sinc(ωct)  .   // b(t) is even in t    (29.2) 
 
As mentioned in Comment (1) at the end of Section 3, since b(t) is a filter kernel, it has dimensions of 
inverse time and the filter spectrum (transfer function) B(ω) is dimensionless.  
 
Recall the Convolution theorem (3.6),  
 

 o(t) =  ∫
-∞

 ∞  dt' b(t-t')i(t')  ⇔ O(ω) = B(ω) I(ω)    (3.6) 

 
where i(t) is the input to a filter and o(t) the output. Using i(t) = δ(t), we get o(t) = b(t), so b(t) is the 
impulse response of the filter. [In this special situation, we are not following our Section 3 Comment (1) 
convention since this i(t) has dimensions of inverse time instead of being dimensionless.]  
 
A digital filter approximating (3.6) has this form,  
 

 o(tn)  = ∑
m = -∞

∞
   ∆t  b(tn - tm) i(tm)     where  tn = n ∆t .     (21.4) 

or 
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 on  = ∑
m = -∞

∞
   ∆t bn-m im   .         (29.3) 

 
If we set the input to a digital unit impulse at t = 0, i(tm) = im  = δm,0, then the output is 
 
 on  =  ∆t bn            (29.4) 
 
so ∆t bn is the unit impulse response of the digital filter. Recalling from (3.2) the symmetry of the 
convolution equation (or just set m' ≡ n-m) we can write (29.3) instead as 
 

 on  =  ∑
m = -∞

∞
   ∆t  in-m bm .         (29.5) 

 
In equations (29.3) and (29.5) we think of in and on as being dimensionless, and bn as having dimensions 
of inverse time so  ∆t bn  is dimensionless. In (24.6) we used hn ≡ ∆t bn but here we stick with bn.  
  
Example:  We assume these parameters, since the resulting filter will be useful later on :  
 
 T1 = 1 
 ω1 = 2π/T1 = 2π 
 ωc = ω1/2 = π // Nyquist rate, see end of Section 20 
 Δt = T1/4 = 1/4 // filter will be clocked at 4x rate      (29.6) 
 
Maple computes the bm from (29.2) as follows (tiny offset added to avoid divide by zero in the hand-made 
sinc function) 
 
   

 
 

         (29.7) 
 
The filter has symmetric coefficients b-n = bn since b(t) in (29.2) is even in t,  so it will exhibit a linear 
phase response as discussed in Section 28.  This in turn means a constant group delay as in (28.4).  



  Chapter 4: Some Practical Topics 

  114 

 
We can verify the locations of these points on the sinc curve,  
 

 

        Fig 29.2 
 
The digital filter implementation using (29.5) is just this equation  (Δt = 1/4),  
 

 4on  =   ∑
m = -10

10
   in-m bm  =   inb0 +  ∑

m =1

10
   in-m bm  + ∑

m =-1

-10
   in-m bm 

  = inb0 +  ∑
m =1

10
   in-m bm  + ∑

m =1

10
   in+m bm     // since b-m = bm 

  = inb0 +  ∑
m =1

10
   [in-m + in+m ] bm  

 
  = inb0  + [in-1 + in+1 ] b1  +  [in-2 + in+2 ] b2   +  .... + [in-10 + in+10 ] b1   .   (29.8) 
  
This equation is implemented in the following piece of hardware,  

 
                  Fig 29.3 



  Chapter 4: Some Practical Topics 

  115 

 
Notice that the registers on the top march samples left to right, while those on the bottom go right to left. 
The clock lines are not drawn; all registers are clocked with period Δt = T1/4 = 1/4. The registers (D flip-
flops) sometimes appear as boxes containing z-1 as in Fig 24.4.  If a register input is in+1 in the middle of 
a clock period, that register's output is the previously clocked sample in. Usually the clock is a square 
wave signal and the registers transfer input to output on the positive clock edges of the square wave. The 
circled plus signs are adders, while lines marked with an X indicate multiplication by the constant 
appearing next to the X. All lines indicate busses containing some number of bits used to represent the 
digital signals, perhaps 8, 10 or 12.  
 An actual design might be done a bit differently using pipelining registers to avoid the large 
combinatoric delay built up through the long string of adders at the bottom (if speed is an issue).  
 
We now wish to compute the spectrum ("transfer function") of this digital filter to see how close it comes 
to being a "brick wall" with cutoff at ωc. Basically, we want to compute the Digital Fourier Transform 
spectrum associated with the finite sequence of samples bm. Recall that Δt bm is the dimensionless impulse 
response of the filter.   
 
 bm  =   (π/ωc)sinc(ωcmΔt)  m = -10 to 10,   else 0  21 "taps"  (29.9) 
 
We know that if we include terms from m=-∞ to m=+∞, we shall obtain for the Digital Fourier Transform 
spectrum B'(ω) an exact brick wall box-shaped filter with image boxes going off to the left and right. But 
for m limited to the range (-10,10), which makes use of 21 bm coefficients (a 21 "tap" filter), we expect to 
get only an approximation to Fig 29.1. From box (23.5),  
 

 B'(ω) ≡ (T1/4) ∑
n = -10

10
  bn e-iωnT1/4  .        (29.3) 

 
Here is a plot of the central peak for a filter of 21 taps (blue) compared with one of 101 taps (red). Notice 
that the cutoff frequency is at ωc = π, and as usual plots are of | B'(ω) |, so the ringing on both sides of the 
peak is "rectified",  
 

 

  Fig 29.4 
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The 21-tap blue curve "brick wall", though not perfect, is pretty good, giving a fairly steep edge while 
maintaining a linear phase characteristic.  
 
Below is the same plot with a wider range of ω (called w in the Maple code), showing the two nearest 
image spectra. Because we have selected Δt = T1/4 = 1/4  (4x oversampling) for this filter, the first image 
spectrum on the right is centered at 4ω1  = 4(2π)  ≈ 25 .  
 

 

 
                     Fig 29.5 
 
In this Section we have described a particular example of a low-pass filter. One problem that is evident 
from the plots above is that there is ringing in the spectra, known as "the Gibbs phenomenon". This can 
be reduced by multiplying the filter coefficients by a symmetric Gaussian-like weighting or "window" 
function. There are many proposed window functions associated with names Bartlett, Hann, Kaiser, 
Hamming, Blackman, etc.  
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30. Use of Oversampling in a D/A Converter Design 
 
Here we discuss the design of an output circuit which contains a D/A converter. We are not concerned 
with the internal design of the actual D/A converter "chip" itself.  
 
(a) A very simple D/A converter 
 
Consider the following finite-length digital signal, which we assume has time spacing T1,  
 
 yn (n=-5..5) = { 1,2,3,3,2,1,1/5,-1,-2,-2,-1}    
 

              Fig 30.1 
        
All samples other than those shown are 0.  
 Using an arbitrary pulse shape xpulse(t), we  can construct an amplitude-modulated pulse train x(t) 
whose spectrum is X(ω), as shown in summary box (25.4), 
 

 x(t)  =  ∑
n = -∞

∞
   yn xpulse(t -tn)   tn = n T1   yn = y(tn)   (30.1) 

 
 X(ω) =  (1/T1)Xpulse(ω) Y'(ω) ,         (30.2) 
 
where from summary box (23.5),  
 

 Y'(ω) ≡ T1 ∑
n = -∞

∞
  yn e-iωnT1 .    // Y"(z) =  Y'(ω)/T1   (30.3) 

 
If we were to select xpulse(t) to be a box of height 1 and width T1, then we could regard the stair-step 
outline function shown in Fig 30.1 as a candidate analog signal y(t) whose samples are the yn. In this 
special case, y(t) = x(t) so Y(ω) = X(ω).  From (9.2) and (12.1) we have 
 
 Xpulse(ω)  = Xbox(ω,T1) = e-iωT1/2 T1 sinc(ωT1/2)     (30.4) 
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where the phase arises since the box (0,T1) = (0,1) is shifted T1/2 to the right of the position of the 
symmetric box used in Section 9. Then using (30.2),  
 

 Y(ω) = X(ω)  = e-iωT1/2 sinc(ωT1/2) Y'(ω) = e-iωT1/2 sinc(ωT1/2) T1 ∑
n = -∞

∞
  yn e-iωnT1 . (30.5) 

 
Y(ω) is the Fourier Integral Transform spectrum of the stair-step analog signal in Fig 30.1. Here are plots 
first of  |Y'(ω)| from (30.3) using Fig 30.1 data, and second (red) of |Y(ω)| using (30.5).  
 

 
 

 
                |Y'(ω)|        Fig 30.2  

 

 
                  |Y(ω)|         Fig 30.3 
 
We see the expected image spectra in Y'(ω) in the first plot, but these spectra are quite suppressed in the 
second plot due to the taming effect of the sinc function zeros in (30.5), as shown in blue. 
 
The above discussion describes the output of the following simple n-bit D/A converter design.  
 

      Fig 30.4 
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The purpose of the register on the left is to provide a stable signal on bus B to the D/A converter. We 
assume that the D/A converter is "glitch free" on its output, and just does what it should do.  
 
(b) Oversampling just the D/A converter  
 
We now trivially modify the above design by changing the D/A clock from clk1x to clk4x which runs 4X 
faster than clk1x,  
 

      Fig 30.5 
 
The D/A converter is now "4x oversampling" the data on the B bus. Besides making the D/A converter 
work harder, it seems clear that the output signal x(t) will be exactly the same as shown in Fig 30.1. Thus 
the plots of | Y'(ω) | and | Y(ω) | =  | X(ω) | shown above apply to this design as well as that of Fig 30.4.  
 It is useful, nevertheless, to think of the output of the oversampled design as follows, where the 
nonvanishing yn amplitudes are numbered n =  -20 to + 23,  
 

             Fig 30.6 
 
Now the output rectangles are 1/4 as wide because the D/A is clocking 4X faster. The analog outline is 
the same, but our analysis will be different. We shall now compute X(ω) in terms of the thin rectangles of 
Fig 30.6. Looking at the four y0 = 1 samples to the right of the vertical axis, those four boxes will make 
this contribution to the spectrum 
 
X(ω) = Xbox(ω,T1/4) [...  + y0 + y0 e-iω(T1/4) + y0 e-2iω(T1/4) + y0 e-3iω(T1/4)  + .... ]    (30.6) 
 
Each thin box has a phase e-iω(T1/4) relative to the box to its left due to (12.1).  Since the pulse is 4x 

narrower than before, Xbox(ω,T1/4) is given by (30.4) with T1→T1/4.  
 
We can write the square bracket in (30.6) as 
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 [ 1 + e-iω(T1/4)  + e-2iω(T1/4) + e-3iω(T1/4) ] y0  ≡ F(ω) y0 .    (30.7) 
 
Every group of four terms will have this same common factor F(ω), so we can factor it out of the entire 
sum. The sum now looks like this:  
 
 X(ω) = Xpulse(ω,T1/4) F(ω) { .....   y0 + y1 e-4iω(T1/4) + y2 e-8iω(T1/4)  + ..... } . (30.8) 
 
But now the expression in curly brackets is exactly Y'(ω)/T1 of (30.3), our original Digital Fourier 
Transform spectrum of y(t). Thus we conclude that 
 
 X(ω)  =  (1/T1) Xpulse(ω,T1/4)  F(ω) Y'(ω) 
 
      =  [ e-iωT1/8 (1/4) sinc(ωT1/8) ] F(ω) Y'(ω) .     (30.9) 
 
So this is X(ω) as computed in terms of the thin boxes of Fig 30.6. But we already argued that 
oversampling the D/A does not change the analog output signal x(t) or its spectrum X(ω), so somehow the 
expressions in (30.9) and (30.5) must be the same. This can only be true if 
 
 e-iωT1/2 sinc(ωT1/2)  =   [ e-iωT1/8(1/4) sinc(ωT1/8) ] F(ω)   ? 
 
or, writing out the sinc functions,  
 
 e-iωT1/2 sin(ωT1/2)(2/ωT1)  =   [ e-iωT1/8(1/4) sin(ωT1/8) (8/ωT1) ] F(ω) ? 
or 
 e-iωT1/2 sin(ωT1/2) =   [ e-iωT1/8 sin(ωT1/8) ] F(ω)  ? 
  
To verify this fact, we define z ≡ e-iωT1/4 ( variable for the Z transform). The above then reads 
 
 z2 (z-2-z2) =   [z1/2 (z-1/2 - z1/2) ] [ 1 + z + z2 + z3 ]  ? 
or 
  (1-z4) =   (1 - z)( 1 + z + z2 + z3)  ? 
 
But this is a standard factorization so we find that X(ω) is indeed the same either way we compute it. For 
some other oversampling factor like 6x or 8x, the verification is similar. We have just shown that 
 
 Xbox(ω,T1) = F(ω) Xbox(ω,T1/4)  
 
which we can think of as saying the product of two filters on the right gives the one on the left.  
 
(c) Add zero-stuffing to reduce aperture 
 
We now add a multiplexor to our previous D/A converter design which causes the first sample in each 
group of four samples to pass through, but "grounds" the last three samples:   
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            Fig 30.7 
 
The output of this design is the following analog signal with pulse amplitudes yn ( where n = -20 to +23 
as before, but three of every four samples in the region of interest are zero),   
 

             Fig 30.8 
 
Due to the zero stuffing, we have in effect reduced the aperture of the signal from 100% to 25%. We saw 
in Section 26 how this broadens the sinc function envelope  (narrower box ⇒ broader sinc) which in turn 
reduces the sinc distortion of the main spectrum. That same effect appears below.  
 Versions of equations (30.1,2,3,4) which apply to Figure 30.8 are (xpulse is now the thin box)  
 

 x(t)  =  ∑
n = -∞

∞
   yn xpulse(t -tn)   tn = n (T1/4)   yn = y(tn)   (30.1) 

 
 X(ω) =  (4/T1)Xpulse(ω) Y'(ω) ,         (30.2) 
 

 Y'(ω) ≡ (T1/4) ∑
n = -∞

∞
  yn e-iωnT1/4 .        (30.3) 

 
 Xpulse(ω)  =  Xbox(ω,T1/4) = e-iωT1/8 (T1/4) sinc(ωT1/8)   .    (30.4) 
 
Combining the pieces gives,  

 X(ω)  =  e-iωT1/8 sinc(ωT1/8)  [ (T1/4) ∑
n = -∞

∞
  yn e-iωnT1/4 ]   

          =  e-iωT1/8 sinc(ωT1/8) [Y'(ω)] 
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The plot of |Y'(ω)| is the same as shown in Fig 30.2 but with 1/4 the amplitude ( the amplitudes yn shown 
in Fig 30.8 are stored in array yz[n] as will be shown later),  
 

 
 

 
                    Fig 30.9 
and the X(ω) plot is this,  
 

 
 

 
                    Fig 30.10 
 
The good news is that the blue sinc distortion is smoother near the central main spectrum (compare to Fig 
30.3). The bad news is that there are lots of high-amplitude image spectra the must be dealt with.  
 
(d) Add an ω1/2 digital low-pass interpolation filter  
 
The new D/A design is this,  
 

 
                    Fig 30.11 
 
where B'(ω) is the transfer function of a low-pass filter which is clocked at the faster clk4x rate. We add 
low-cost registers at each stage in the pipeline to provide a stable input to the next stage.  
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  In Section 29 we constructed an approximate brick-wall filter with this spectrum B'(ω),  
 

 

 
 

 
                 Fig 30.12 
 
The output spectrum of the Fig 30.11 design which includes this filter is then 
 
 Xnew(ω) = B(ω) X(ω) , 
 
where X(ω) was plotted in red in Fig 30.10. Here then is a plot of Xnew(ω) :  
 

 
 

 
             Fig 30.13 
 
The effect of the digital filter is to remove the image spectra from Fig 30.10, a process sometimes called 
alias-rejection. Since this low-pass filter is not a perfect brick wall, there is some small distortion of the 
central spectrum. On the other hand, the aperture reduction due to oversampling with zero-stuffing has 
broadened the sinc hump perhaps alleviating the need for a sin(x)/x post-filter (Section 26). Residual high 
frequency data in the signal can be removed by a low-cost analog filter located to the right of the D/A 
converter in Fig 30.11.  
 
Since we never specified the original signal y(t) for which Fig 30.1 is the sampled version, it is difficult to 
compare the spectrum of that y(t) with the output of the Fig 30.11 design. Nevertheless, plotting the time-
domain output of the Figure 30.11 design is quite interesting.  
 It was noted that the thin bar amplitudes shown in Fig 30.8 (3/4 of which are 0) are stored in array 
yz[n]. Here is how that array is computed from the original amplitudes y[n] of Fig 30.1:  
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In terms of these yz amplitudes, the convolution sum in (29.5) which defines the action of our 
intepolation filter appears as 
 

 (yout)n  =  (1/4) ∑
m = -∞

∞
    (yz)n-m bm         (29.5) 

 
where (yout)n is the output of the filter which becomes, after two 4x clock delays, the output of the design 
of Fig 30.11. 
 Notice that the aperture duty cycle of 25% reduces the amplitude of the the filter output by 1/4, and 
there will be a corresponding reduction in the time-domain filter output signal. As aperture goes to 0, the 
entire signal eventually goes away. This fact, glossed over in Section 29, is one cost of using a small 
aperture. For comparison purposes, we shall omit the 1/4 factor in the following code which computes  
(yout)n for our 21 tap filter, 
 

 
 
Here is a plot of the output sample values yout[n],  
 

 
 

      
             Fig 30.14 
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Since the D/A converter holds each sample for duration T1/4, the actual analog output will have the 
following form, which we obtain using our ancient Maple V's primitive histogram routine (which we have 
been painfully using to make all the bar plots above), 
 

 
 

 
             Fig 30.15 
This may be compared with our starting digital signal of Fig 30.1,  
 

               Fig 30.1 
 
The output Fig 30.15 seems a little "ratty". If we increase the filter from 21 taps to 41 taps, things 
improve significantly, though there is still some ringing before and after the output pulse of interest 
(recall the comment about Gibbs phenomena at the end of Section 29).  
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             Fig 30.16 
 
In the literature of oversampling, our oversampled digital low-pass filter is usually referred to as a digital 
interpolation filter, for obvious reasons comparing Fig 30.1 and Fig 30.16. In this application, since 3 out 
of every 4 incoming samples are zero from the zero-stuffing logic, it is possible to implement the filter 
more efficiently that we show in Fig 29.3 using polyphase techniques. 
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Chapter 5: Some Theoretical Topics  
 
In this chapter we wander off on a more theoretical topic before returning in Chapter 6 to the practical 
computation of the power spectra of specific pulse train line codes. The material in this chapter is not 
used in that computation and the uninterested reader would do well to skip Section 31.  
 
31. Spectral Dispersion Relations 
 
(a) A simple integral equation for X(ω) analytic in the upper half plane 
 
Let X(ω) be some arbitrary function of the complex variable ω which has two properties:  (1) X(ω) is 
analytic in the upper half ω plane; (2) On any ray to ∞ in this upper half plane, X(ω) → X(∞), a constant 
which could be 0. Later we shall consider the case where "upper" ↔ "lower".  
 
Consider then the following vanishing contour integral, where ω is real,  
 

 ∫C  dω' 
X(ω')
ω'-ω    = 0 .         (31.1) 

 
Here, C is a counterclockwise contour which goes around the upper half ω' plane, but which detours 
infinitesimally around and above the pole at ω' = ω.  The integral vanishes as usual since we can shrink 
the contour away to nothing.  
 

              Fig 31.1 
 
We can regard this integral as being made of three pieces:  
 
(1) infinite semicircle. The contribution here is, using ω' = Reiθ and thinking R→ ∞,  
 

 ∫SC  dω' 
X(ω')
ω'-ω    =  ∫

0

 π  (Reiθidθ) 
X(Reiθ)
 Reiθ -ω  ≈  i  ∫

0

 π dθ X(Reiθ)  = X(∞) iπ  

 
(2) tiny semicircular detour around the pole at ω = ω'. This gives minus one half the pole residue since the 
path goes half way around this pole the wrong way, so the contribution is – iπ X(ω)  (see Appendix C text 
below Fig C.1, the partial residue rule).  
 
(3) the two pieces (-∞,ω-ε) and (ω+ε,+∞) along the real ω' axis as ε→0. This is basically the integral 
along the real axis but missing the single point ω = ω'. As noted in Appendix C, this is called a Cauchy 



  Chapter 5: Dispersion Relations 

  128 

principle part (principle value) integral, and sometimes people (including us) denote it with a little tick 

mark through the integral, ∫--, while others use the notation P∫ or p.v.∫. The principle part integral is a 

limit just as are the previous two pieces of the contour C.  
 
Thus, we can rewrite (31.1) as follows: 
 

 X(∞) iπ  – iπ X(ω) +  ∫-- ∞
-∞ dω' 

X(ω')
ω'-ω    = 0 

or 

 X(ω) = X(∞) + (1/iπ) ∫-- ∞
-∞ dω' 

X(ω')
ω'-ω            (31.2) 

 
 where X(ω) is analytic in the upper half plane and in this half plane on any ray X(ω) → X(∞) 
 
This is an integral equation for X(ω) which involves a principle value integral of X(ω).  
 
(b) A simple integral equation for X(ω) analytic in the lower half plane 
 
We now repeat the previous section with upper → lower.  
 
Let X(ω) be some arbitrary function of the complex variable ω which has two properties:  (1) X(ω) is 
analytic in the lower half ω plane; (2) On any ray to ∞ in this lower half plane, X(ω) → X(∞), a constant 
which could be 0. 
 
The new contour of interest is this 
 

             Fig 31.2 
 
The differences now are that the great circle contour is now clockwise instead of counterclockwise, and 
that the little detour contour now goes "the right way" around the pole at ω' = ω. As a result, the 
contributions from both these terms get negated, but the principle part integral is unchanged. Equation 
(31.1) is as before but C is now this new contour 
 

 ∫C  dω' 
X(ω')
ω'-ω    = 0 .         (31.1)' 

 
so that 
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 –X(∞) iπ  + iπ X(ω) +  ∫-- ∞
-∞ dω' 

X(ω')
ω'-ω    = 0 

or 

 X(ω) = X(∞) – (1/iπ) ∫-- ∞
-∞ dω' 

X(ω')
ω'-ω          (31.3) 

 
 X(ω) is analytic in the lower half plane and in this half plane on any ray X(ω) → X(∞) 
  
Comparing to (31.2) one sees that the only difference is the sign of the integral. One way to understand 
this result is to think of reflecting the ω plane through the real axis, so that the imaginary axis is reflected 
and this is accounted for by taking i → - i in (31.2) to get (31.3).  If we now define σ by 
 

 σ  ≡  
⎩
⎨
⎧  +1 if X(ω) is analytic in the upper half plane with ray limit X(∞)
–1 if X(ω) is analytic in the lower half plane with ray limit X(∞)     (31.4) 

 
We can combine our two results as follows :  
 

 X(ω) = X(∞) + σ (1/iπ) ∫-- ∞
-∞ dω' 

X(ω')
ω'-ω   .       (31.5) 

 
With our adopted phase sign convention e-iωt in the Fourier Integral Transform (1.1), we normally obtain 
spectral functions X(ω) which are analytic in the lower half plane and so σ = -1. For other sources (such 
as Stakgold) which use the reverse sign e+iωt of the Fourier transform phase, one would use σ = + 1.  
 
Example 
 
We considered an RC filter in Section 4 (b) and found there the following transfer function,  
 

  G(ω) = 
1

 1 + iωRC  =  
(-i/RC)
ω - i/RC  = 

(-i/τ)
ω - i/τ    .   τ ≡ RC   (31.6) 

 
This function has a pole in the upper half plane at ω = i/RC and is analytic in the lower half plane with a 
ray limit there G(ω) → 0.  For this function, (31.3) or (31.5) with σ = -1 claims that 
 

 G(ω) = – (1/iπ) ∫-- ∞
-∞ dω' 

G(ω')
ω'-ω          (31.7) 

or  

 
1

 1 + iωRC  = – (1/iπ) ∫-- ∞
-∞ dω' 

1
ω'-ω   

(-i/τ)
ω' - i/τ     =   – (1/iπ)(-i/τ) ∫-- ∞

-∞ dω' 
1

(ω'-ω)(ω'-i/τ)  

   

           =  (1/πτ) ∫-- ∞
-∞ dω" 

1
ω"(ω" +ω - i/τ)  =  (1/πτ) ∫-- ∞

-∞ dx 
1

x(x +a)  a ≡ ω-i/τ,  τ = RC  . 

 
As a principle value integral exercise, we now evaluate the integral shown to verify that it really comes 
out being G(ω) :   
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  ∫-- ∞
-∞ dx 

1
x(x +a)   =  limε→0 [ ∫

-∞

 -ε  +  ∫
ε

 ∞ ] 
dx

x(x +a)  

 

 = (1/a) limε→0 {  ln(
x

x+a )|-ε-∞  + ln(
x

x+a )|∞ε ]   

 

 = (1/a) limε→0 { ln(
-ε

-ε+a ) – ln(1)   +  ln(1)  –  ln(
ε
ε+a ) }  = (1/a) limε→0 { ln(

-ε
-ε+a )  –  ln(

ε
ε+a ) } 

 

 = (1/a) limε→0 { ln(
-ε

-ε+a 
ε+a
ε  )}  = (1/a) limε→0 { ln(

ε+a
ε-a  )}   = (1/a) limε→0 { ln(- 1-iε')  }  

 
  = (1/a) limε→0 { ln(e-iπ)  } = (1/a) (-iπ)  . 
 
The term -iε' represents the fact that the log argument has a small negative imaginary part, which takes a 
bit of work to show: 
 

 
ε+a
ε-a    = – 

a+ε
a-ε   

a*-ε
 a*-ε   =  

-|a|2 + 2iεIm(a) - ε2

 |a|2 - 2εRe(a) + ε2    =  
-|a|2 + 2iε(-1/τ) - ε2

 |a|2 - 2εω + ε2   . 

 
We have then shown that the right side of (31.7) evaluates to the left side,  
 

 – (1/iπ) ∫-- ∞
-∞ dω' 

G(ω')
ω'-ω    =  (1/πτ) ∫-- ∞

-∞ dx 
1

x(x +a)   =  (1/πτ) (1/a) (-iπ) = - 
i/τ
a  = 

-i/τ
 ω-i/τ  = G(ω) . 

 
(c) Dispersion Relations for  X(ω)  
 
Notice in (31.5) the very important factor of (1/i). If we now break X(ω) into its real and imaginary parts 
and then write down the real and imaginary parts of equation (31.5), we find that Re(X) and Im(X) are 
related to each other by the following two equations: 
 

 Re[X(ω)] = Re[X(∞)] + σ(1/π) ∫-- ∞
-∞  dω' 

Im[X(ω')]
ω'-ω         (31.8a) 

 Im[X(ω)] = Im[X(∞)] – σ(1/π) ∫-- ∞
-∞ dω' 

Re[X(ω')]
ω'-ω   .      (31.8b) 

 
Basically, this says that the real part of X(ω) along the real axis completely determines the imaginary part, 
and vice versa. One cannot arbitrarily set the real and imaginary parts independently. This is a general 
fact about analytic functions X(ω).  
 
Next, let us assume in addition that X(ω) is the spectrum of a real function x(t). As we saw in Section 7, 
this implies the reflection rule X(−ω) = X(ω)*, which says X(ω) is Hermitian. Thus, we can fold the 
negative portions of the above integrations over to the positive side. First (we omit principle value tick 
marks just for a while),  
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  ∫
-∞

 0   dω' 
Im[X(ω')]
ω'-ω     =  ∫

+∞

 0  [-dω"] 
Im[X(-ω")]

-ω"-ω   =  ∫
+∞

 0  [-dω"] 
Im[X(ω")*]

-ω"-ω   

 

 =  ∫
+∞

 0  [-dω"] 
-Im[X(ω")]

-ω"-ω  =  ∫
0

 ∞ [dω"] 
-Im[X(ω")]

-ω"-ω  = ∫
0

 ∞ dω" 
Im[X(ω")]
ω"+ω   

 
and therefore 
 

  ∫
-∞

 ∞  dω' 
Im[X(ω')]
ω'-ω    =  ∫

0

 ∞ dω' 
Im[X(ω')]
ω'+ω    +  ∫

0

 ∞ dω' 
Im[X(ω')]
ω'-ω     

 

  =  ∫
0

 ∞ dω' Im(X(ω')] [
1

ω'+ω  + 
1

ω'-ω  ] = 2  ∫
0

 ∞ dω' 
ω'Im[X(ω')]
ω'2-ω2    . 

 
The other integral can be folded in a similar manner,  
 

  ∫
-∞

 0   dω' 
Re[X(ω')]
ω'-ω    =   ....   =  –  ∫

0

 ∞ dω' 
Re[X(ω')]
ω'+ω   

 

  ∫
-∞

 ∞  dω' 
Re[X(ω')]
ω'-ω    =  ∫

0

 ∞ dω' Re(X(ω')] [- 
1

ω'+ω  + 
1

ω'-ω  ]   = 2ω ∫
0

 ∞ dω' 
Re[X(ω')]
ω'2-ω2   

 
We then rewrite (31.5) as , valid for X(−ω) = X(ω)*  (tick marks restored),  
 

 Re[X(ω)] = Re[X(∞)] + σ (2/π) ∫--∞0  dω'ω' 
Im[X(ω')]
ω'2-ω2        (31.9a) 

 Im[X(ω)] = Im[X(∞)] – σ(2/π)  ∫--∞0  dω' 
Re[X(ω')]
ω'2-ω2   .     (31.9b) 

 
These two equations are completely general, given the assumptions we have made. They are associated 
with the names Kramers and Kronig who wrote similar equations in 1926 for certain functions 
connected with the index of refraction and the dispersion of light (hence "dispersion relations").  
 
(d) Dispersion Relations for γ(ω) 
 
In filter theory, one thinks of X(ω) as the "transfer function" of a filter. It is usually easier to think in 
terms of the function γ(ω) which we define as 
 
 γ(ω) ≡ - ln [X(ω)] = α(ω) + i β(ω)  .         (31.10) 
 
Then we get 
 
 X(ω) = e-γ(ω) = e-α(ω) e-iβ(ω) .         (31.11) 
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Notice that we defined γ(ω) with a minus sign, so both exponents have minus signs. The real quantities 
α(ω) and β(ω) are the attenuation and phase functions of the filter.  
 
Can we apply the dispersion relations to the function γ(ω) instead of X(ω) ? Yes, provided γ(ω) meets the 
same requirements assumed for X(ω). If X(ω) has a pole in the upper half ω plane, as in (31.6), then γ(ω) 
has a branch cut singularity in the upper half plane starting at the pole and going off to the left. No 
problem since γ(ω) is still analytic in the lower half plane. However, consider: 
 
 γ(ω) ≡  - ln [X(ω)] = + ln[ 1/X(ω)]  . 
 
This says that a zero in X(ω) is just as bad as a pole from γ(ω)'s point of view. A zero of X(ω) in the 
lower half plane means γ(ω) has a branch cut in the lower half plane starting at this zero location and 
going off to the left, and this invalidates our conditions (σ = -1).  
 
Thus, we must now assume that X(ω) has neither zeros nor poles in the lower half plane, which maps into 
the Z Transform H"(z) having neither zeros nor poles outside the unit circle in Fig 24.1. A filter satisfying 
this condition is called a minimum phase filter.  
 
Since we have assumed X(ω) goes to X(∞) on the great circle at infinity, we know that γ(ω) goes to γ(∞) 
= -ln[ X(∞)], so no extra assumption is needed here. If X(∞) = 0, then γ(∞) = -∞, which is a little 
inconvenient. It just says that the attenuation of our filter is infinite as ω → ∞.  
 
So now we can write the dispersion relations analogous to (31.8) for γ(ω) instead of X(ω), assuming now 
that X(ω) has neither poles nor zeros in the lower half ω plane. We must choose σ = -1 in (31.4), and note 
that Re[γ(ω)] = α(ω) and Im[γ(ω)] = β(ω) :   
 

 α(ω) = α(∞) + σ (1/π) ∫-- ∞
-∞ dω' 

β(ω')
ω'-ω           (31.12a) 

 β(ω) = β(∞) – σ (1/π) ∫-- ∞
-∞ dω' 

α(ω')
ω'-ω           (31.12b) 

 
Now if x(t) is real so that X(ω) = X(-ω)* , we find that γ(ω) is also Hermitian since X(ω) = e-γ(ω) :  
 
 X(-ω) = X(ω)*  ⇒ γ(-ω) = γ(ω)*        (31.13) 
 
     ⇒ α(-ω) = α(ω) and β(-ω) = - β(ω)  
 
Since γ(ω) is Hermitian, we can process (31.12) just as we did processed (31.8) to get 
 

 α(ω) = α(∞) + σ (2/π) ∫--∞0  dω'ω' 
β(ω')
ω'2-ω2         (31.14a) 

 β(ω) = β(∞) – σ (2/π)  ω ∫--∞0  dω' 
α(ω')
ω'2-ω2         (31.14b) 
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The main point of the above is that the phase of a minimum phase filter is completely determined by its 
attenuation, and vice versa. Even for general filters there will be some relation like the above, but it will 
include terms to describe the zeros of X(ω) in the lower half plane. The conclusion that the phase and 
attenuation cannot be independently set is unavoidable.  
 
(e) Dispersion and Attenuation 
 
We showed in (21.19) that the group delay of a filter is given by 
 
 τd  = dφ/dω   where   B(ω) = |B(ω)| e-iφ(ω)  . 
 

Translating that into our current context, we get 
 
 τ(ω) = dβ(ω)/dω   where   X(ω) = e-γ(ω)  =  e-α(ω) e-iβ(ω)  .  (31.15) 
 
If we define the integral  appearing in (31.14b) as K(ω), including the (2/π),  
 

 K(ω) ≡  (2/π) ∫--∞0  dω' 
α(ω')
ω'2-ω2         (31.16) 

 
then we find that 
 
 τ(ω) =  dβ(ω)/dω   =  d [ ω K(ω) ] /dω .  
 
If the integral K(ω) were somehow a constant κ, we would conclude that τ(ω) = κ, and the filter would be 
"non-dispersive". As discussed in Section 21 (b), this means the filter is "linear phase" and the group 
delay is a constant independent of ω.  All frequency components of a pulse packet would then traverse the 
filter in the same time, so the pulse does not spread out (disperse) in time.  
 
Obviously K(ω) cannot really be independent of ω, so a non-dispersive minimum phase filter does not 
exist. However, over certain ranges of ω where K(ω) is very slowly varying, such a filter can be 
reasonably non-dispersive. This would be a region of ω far away from any region where the attenuation 
α(ω) strongly varies.  
  

Crude Proof:  Suppose α(ω) is very smoothly varying near some ω. In the integral (31.16) for K(ω) 
near ω we expect the main contribution to come from ω' close to ω, (ω-a,ω+a) for small a,  since the 
denominator is 0 and therefore amplifies the numerator there. The denominator is roughly 2ω(ω'- ω) 
which is a pole. If we assume that α(ω) has some linear form α(ω') ≈ α(ω) + (ω-ω')α'(ω) near ω, then 
this integration region which would normally be highly amplifying in fact yields the following,  
 

 K(ω) ≡  (2/π)  ∫
0

 ∞  dω' 
α(ω')
ω'2-ω2   ≈   (2/π)  ∫ω-a

 ω+a  dω' 
α(ω) + (ω-ω')α'(ω)

ω'2-ω2     

 

  ≈ (2/π) α(ω) 
1

2ω  {  ∫ω-a

 ω+a  
dω'
ω-ω'  }  + (2/π) α'(ω) 

1
2ω  {  ∫ω-a

 ω+a  
(ω-ω')dω'
ω-ω'  }  
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  = (2/π) α(ω) 
1

2ω   { 0 }   + (2/π) α'(ω) 
1

2ω  2a    ≈   (2a/π) 
α'(ω)
ω     ≈  0  since α'(ω) is small 

 
The rest of the integration region which is far from ω yields a contribution to K(ω) which is weakly 
dependent on ω and which we can regard as roughly constant K(ω) ≈ κ for some band Δω. We then 
get our desired approximate linear phase and constant group delay, and therefore very small 
dispersion,  
 
 τ(ω) =  dβ/dω  = d [ ω K(ω) ] /dω  ≈  d [ ω κ ] /dω  = κ  . 
 
However, if α(ω) varies significantly near ω, our linear term with α'(ω) might be large and there will 
likely be additional higher terms in the Taylor expansion of α(ω) so K(ω) might then vary strongly 
with ω due to the integration contribution from region (ω-a,ω+a). In this case, we get non-linear phase 
and dispersion.  

 
To repeat the claim above:  For ω far from regions where attenuation α(ω) significantly varies, we expect 
K(ω) to be roughly constant and so we have nearly linear phase, nearly constant group velocity, and small 
dispersion.  
 
Attenuation and dispersion are intertwined. You can't have one without the other. This is a general fact 
one learns from the dispersion relations, without any specific filter in mind.  
 
(f) Application to coaxial cable 
 
Consider an infinitely long coaxial cable driven at its left end at z = 0. A coaxial cable acts as a filter 
G(ω). In the frequency domain, if we drive the cable with I(ω), the output O(ω,z) at z is 
 
 O(ω, z) = G(ω, z) I(ω)  G(ω) = e-γ(ω)z   γ(ω) = α(ω) + iβ(ω) .  (31.17) 
 
For a coaxial cable one has 
 
 γ = (R+iωL)(G+iωC)          (31.18) 
 
where R,L,G and C are resistance, inductance, conductance (across the dielectric) and capacitance all per 
unit length of the cable. If we ignore ohmic losses in both the conductor and the dielectric, then R = G = 0 
and we get 
 
 γ = iω LC . 
 
The inductance L is generally independent of ω, but C = ε(ω)2πε0/ln(b/a) = k1 ε(ω), where ε(ω) is the 
dielectric "constant", which in general is not constant as a function of ω. Thus we have 
 
 γ(ω)  = iω Lk1 ε(ω) . 
 
From Maxwell's equations one knows that the index of refraction of a medium is given by  
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 n(ω) = με  = ε(ω)  /k2  . 
 
So we then have, 
 
 γ(ω)  =  iω Lk1 k2 n(ω)   =  iωk3 n(ω)  
 
  = iωk3[ Re(n) + i Im(n) ]   = - ωk3Im(n) + iωk3Re(n)  = α(ω) + iβ(ω) 
so 
 
 α(ω) = -ωk3Im[n(ω)]  β(ω) = ωk3Re[n(ω)]  . 
 
If it were true that Re[n(ω)] were independent of ω, then β(ω) would have linear phase and we would then 
have constant group delay and no dispersion in the coaxial cable.  
 
It turns out that the index n(ω) has the right properties for the dispersion relations (31.8) to be valid, so 
 

 Re[n(ω)] = Re[n(∞)] + σ(1/π) ∫-- ∞
-∞ dω' 

Im[n(ω')]
ω'-ω        (31.19a) 

 Im[n(ω)] = Im[n(∞)] – σ(1/π) ∫-- ∞
-∞ dω' 

Re[n(ω')]
ω'-ω        (31.19b) 

 
where usually Re[n(∞)]  = 1 and Im[n(∞)] = 0. If it happened that Im[n(ω)] were very small, then 
(31.19a) says that Re[n(ω)] = Re[n(∞)]  = constant, just what we want to get no cable dispersion.  
 
In a non-polar dielectric, like polyethylene or teflon, n(ω) does in fact have a very small imaginary part 
for frequencies below the electromagnetic resonances of the medium. Thus, if we could ignore ohmic 
losses in the conductors, coaxial cables using these materials as dielectrics would be non-dispersive up to 
infrared frequencies -- where vibrational and rotational resonances set in. 
 
Dispersion relations are often written for other functions such as the dielectric constant ε(ω). In this case 
one can regard the relationship between electric displacement D and electric field E 
  
 D(ω) = e(ω) E(ω)          (31.20) 
 
as a "filter", where everything is evaluated at the same point in space. 
 
(g) The Dispersion Relation expressed in terms of the Hilbert Transform 
 
Recall the integral equation which is the starting point for the dispersion relation discussion above,  
 

 X(ω) = X(∞) + i σ (1/π) ∫-- ∞
-∞ dω' 

X(ω')
ω-ω'         (31.5) 
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 σ  ≡  
⎩
⎨
⎧  +1 if X(ω) is analytic in the upper half plane with ray limit X(∞)
–1 if X(ω) is analytic in the lower half plane with ray limit X(∞)     (31.4) 

 
where we have introduced some offsetting minus signs. The integral appearing here is in fact another 
transform in our growing cornucopia of transforms, this one being the Hilbert Transform,  
 

 Xh(ω)  ≡  (1/π) ∫-- ∞
-∞ dω' 

X(ω')
ω-ω'    .  // projection = transform    (31.21) 

 
Thus, it happens that the dispersion relation (31.5) can be written 
 
 X(ω)  =  X(∞) + i σ Xh(ω) .        (31.22) 
 
If X(∞) = 0 and σ = +1, any solution to the dispersion relation (31.5) must be a function X(ω) which is 
equal to its own Hilbert transform times iσ. In Appendix C we find that (with β = 1)  
 
 X(ω) = eiω  ⇔ Xh(ω) = -i eiω .      (C.43)  
 
This X(ω) is then a particular solution to the dispersion relation since  i Xh(ω) = eiω  = X(ω) and in the 
upper half plane X(∞) ~ ei(+i∞)  = e-∞ = 0.  In (31.7) we found another solution for the case σ = -1 where 
X(∞) = 0 in the lower half plane.  
 The general study of the integral equation (31.5)  
 

 X(ω) = X(∞) + σ (1/iπ) ∫-- ∞
-∞ dω'  

1
ω'-ω  X(ω')       (31.5) 

 
and its possible solutions is complicated because the kernel 1/(ω'-ω) (called in this case a Cauchy kernel) 
is singular (it blows up when ω = ω').  See for example Polyanin and Manzhirov Chapter 15. It is more 
useful to think of the dispersion relation as an integral condition which a spectrum X(ω) must satisfy 
rather than an integral equation which completely determines that spectrum.  
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Chapter 6: Power in Pulse Trains 
 
32. The Autocorrelation Function 
 
Here we deal with some preliminary matters before studying the power spectra of pulse trains.  
 
Start with a reasonable function x(t). Define the autocorrelation function of x(t) as follows: 
 

 rx(t)  ≡  ∫
-∞

 ∞  dt' x(t')* x(t' + t)  .        (32.1) 

 
The integrand is the function evaluated at time t' times the same function evaluated at later time t'+t. 
 Some sources define rx(t) with an extra overall "normalizing" constant factor. For example, if one 
were to define ax(t)  ≡ rx(t)/ T where T is the duration of a pulse train, then ax(t) and rx(t) have different 
dimensions. Below we show that our rx(t) has dimensions of energy, so ax(t) would have dimensions of 
power. We prefer defining autocorrelation as shown in (32.1) with no normalizing constant.  
 
A simple reflection property follows from the above definition (use t" = t' + t ):  
 
 rx(-t) = rx(t) *  .          (32.2) 
 
For real x(t) then rx(t) is an even function of t, in (32.1) we could put either +t or -t in the last parentheses. 
 
Although we have not yet mentioned statistics and randomness, one could easily imagine the following 
situation. Suppose x(t') is some sort of random function ("noise") that takes values in the range -1 to 1. It 
seems likely that for a value of the separation t that is larger than some small value, one might get rx(t) = 
0.  The vague argument would be that there is no "correlation" between x(t') and x(t'+t), so the product of 
these two functions ought to be pretty random, and a sum of random numbers in the range -1 to 1 ought to 
be zero. Even in this case, we can see that the result is not zero if t = 0, since we are then summing a 
positive quantity. In fact, rx(0) is the area under x(t)2.  
 
(a) Autocorrelation function for a Square Pulse 
 
Before going any further, let us compute the autocorrelation function for some simple case we are 
familiar with. A good candidate is x(t) = a square pulse of width τ and amplitude A. As in (9.1),  
 
 xpulse(t) = A [ θ(t + τ/2) - θ(t - τ/2) ]   .       (9.1)  
 
One can easily do the above integral (32.1) to get the answer, but it is very obvious what the answer is. 
We are multiplying a box times a box shifted by t. Where they overlap, the integrand is A2. The boxes 
only overlap if the absolute value of shift t is less than the width τ of the pulse. If this is so, the size of the 
overlap is τ - |t|. If |t| is larger than τ, there is no overlap, so the integral is 0. Thus,  
 
 rpulse(t)  = A2(τ - |t|) θ(τ - |t|)  = (A2τ) [ 1 - |t|/τ ] θ(τ - |t|)      (32.3) 
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and we find that the autocorrelation function is a triangle whose base is twice the pulse width,  

   Fig 32.1 
 
In general, if x(t) has some finite width τ, rx(t) will have width 2τ.  
 
(b) Energy, power and spectral energy density for a finite signal x(t) 
 
The total energy in a finite duration signal x(t) can be computed in either the t-domain or the ω-domain 
using Parseval's formula (10.5), to which we add 1/R to each side, 
 

 E =  ∫
-∞

 ∞ dt |x(t)|2/R =   ∫
-∞

 ∞ dω  
|X(ω)|2

2πR   .       (32.4) 

 
If we think of x(t) as the voltage across a resistor R, then dt x2(t)/R is the energy delivered to the resistor 
in time dt, and the integral on the left is the total energy in signal x(t). The dimensions on the right are, 
looking at (1.1),  
 

 dω 
|X(ω)|2

2πR    = sec-1 (volt-sec)2/ohms = (volt2/ohms)sec = watts-sec  = joules = energy . (32.5) 

 
Setting R = 1Ω, we can write this as 
 

 E =  ∫
-∞

 ∞ dt p(t)  =  ∫
-∞

 ∞ dω E(ω)        (32.6) 

              
    p(t) ≡  |x(t)|2 = energy density in the t-domain  (joule/sec = watt) ( = instantaneous power)  
 p(t)dt = energy in dt      (joules)  
 
 E(ω) ≡ |X(ω)|2/2π = energy density in the ω-domain  (joule-sec)     
 E(ω)dω = energy in dω     (joules)   
   
We shall refer to E(ω) as the spectral energy density of signal x(t) whose Fourier Transform is X(ω). 
The isolated single pulse xpulse(t) has a corresponding Epulse(ω). The function p(t) is the "temporal 
energy density". 
 
(c) The Wiener-Khintchine relation 
 
Changing to t" = -t', we can trivially rewrite the definition (32.1) as follows:  
 

 rx(t)  =  ∫
-∞

 ∞ dt" x(t - t") x(-t")*  .  // energy units     (32.7) 
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From now on, we assume x(t) is a real valued function. Recall now the convolution theorem (3.6),  
 

 a(t) =  ∫
-∞

 ∞  dt" b(t-t") c(t")  ⇔ A(ω) = B(ω) C(ω)  .    (3.6) 

 
We see that (32.7) has the standard convolution equation form where we select  
 
 b(t) = x(t)  ↔ B(ω) = X(ω)  
 c(t) = x(-t)*  ↔ C(ω) = X(ω)*   // from (7.2)  
 
 Thus, the diagonalized frequency domain form A(ω) = B(ω) C(ω) is 
 
 Rx(ω) = |X(ω)|2 .          (32.8) 
 
Dividing by 2π we find that 
 
 E(ω) = (1/2π) Rx(ω) .         (32.9) 
 
This says that the spectral energy density E(ω) of signal x(t) is 1/2π times the Fourier Integral Transform 
Rx(ω) of the autocorrelation function rx(t) of the signal x(t). This result is sometimes called the Wiener-
Khintchine [Khintchin] theorem.  
 
Note also from (32.1) that rx(t) evaluated at t = 0 gives the total energy in signal x(t),  
 

 rx(0)  =  ∫
-∞

 ∞ dt |x(t)|2 ≡  E = total energy in signal x(t)     (32.10) 

 
For us, the significance of (32.9) is that we can "inject statistics" into a computation of the autocorrelation 
function, and then we will know the power spectrum of our statistical signal from (32.9). All we have to 
do is Fourier transform the autocorrelation function rx(t).  
 
(d) Verification of Wiener-Khintchine for a Square Pulse 
 
Equation (32.3) gives the autocorrelation function rx(t) for a square pulse. One can insert this into the 
Fourier transform (1.1) to compute Rx(ω),    
 

 Rx(ω) =  ∫
-τ

 τ  dt (A2τ) [ 1 - | t | / τ ] e-iωt   = 2(A2τ)  ∫
0

 τ dt (1-t/τ) cos(ωt) 

 
      = 2(A2τ) (1-cos(ωτ))/(ω2τ) = 4(A2τ) sin2(ωτ/2)/(ω2τ)  = (A2τ2) sin2(ωτ/2)/(ωτ/2)2 
 
     = (Aτ)2 [ sinc(ωτ/2) ]2 ,         (32.11) 
 
and this is recognized from (9.2) to be |X(ω)|2 for the square pulse, in agreement with (32.8) .  
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(e) Cross-correlation, convolution, and autocorrelation 
 

Notation: a* means complex conjugation,  b ∗ c means convolution, b ⋆ c means cross-correlation . 
 
The cross-correlation of two functions b and c is defined this way 
 

 (b⋆c)(t) ≡  ∫
-∞

 ∞  dt' b*(t')c(t+t')  = (c⋆b)*(-t)      (32.12) 

 

where the right equality is easy to show setting t+t' = t". So in general, b⋆c ≠ c⋆b . According to our 
autocorrelation definition (32.1),  
 

 rx(t)  ≡  ∫
-∞

 ∞  dt' x(t')* x(t' + t) ,         (32.1) 

 

the autocorrelation of function b is the cross-correlation of b with itself, so rb = b⋆b.  
 
In Section 7 we noted that a function is Hermitian if f*(-t) = f(t).  
 

Fact:  If b and c are both Hermitian, then b⋆c = c⋆b.       (32.13) 
 

Proof:     b⋆c =  ∫
-∞

 ∞  dt' b*(t')c(t+t') =  ∫
-∞

 ∞  dt' b(-t')c*(-t-t')  =  ∫
-∞

 ∞  dt' b(t"+t)c*(t")  = c⋆b 

 

If b and c are both real and both even, they are both Hermitian so again, b⋆c = c⋆b .  
 
The convolution of two functions b and c we saw from the (3.1) and (3.2) was this 
 

 (b∗c)(t) =  ∫
-∞

 ∞  dt' b(t')c(t-t')  = (c∗b)(t) . 

 
In order to relate these two operations, we need to show more detail in the notation. Thus, using t" = -t',  
 

 [b(t)⋆c(t)](t) =  ∫
-∞

 ∞  dt' b*(t')c(t+t') =  ∫
-∞

 ∞  dt" b*(-t")c(t-t")  = [b*(-t) ∗ c(t)](t) . 

 
If b(t) is a Hermitian function so b*(-t) = b(t), then we have shown that :  
 

Fact:  If b is Hermitian, then b⋆c = b∗c.        (32.14) 
 
If b = c = real, then we have from (32.1) and (32.2),  
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 rb(t) =  ∫
-∞

 ∞  dt' b(t')b(t'+t)  =  ∫
-∞

 ∞  dt' b(t')b(t'-t)  

 
so we have just proven part (a) of this fact, while part (b) was shown above (32.13),  
 

Fact:  (a) If b is real, then  rb =  b⋆b  = b∗b 

  (b) For any b, rb =  b⋆b        (32.15) 
 
(f) Z Transform Wiener-Khintchine relation for a Pulse Train 
 
The Wiener-Khintchine relation was stated above in section (c) as 
 
 Rx(ω) = |X(ω)|2          (32.8) 
 
where Rx(ω) is the Fourier Integral transform of the autocorrelation function rx(t) 
 

 rx(t)  ≡  ∫
-∞

 ∞  dt' x(t')* x(t' + t)  .        (32.1) 

 
in the case that x(t) is real. Once we know about the convolution theorem (3.6) for the Fourier Integral 
Transform, we see that the Wiener-Khintchine relation is just the application of this theorem to the 
particular convolution equation (32.1).  
 
From the amplitudes yn of an infinite pulse train one can define an autocorrelation sequence in analogy 
with the autocorrelation function,  
 

 rs  ≡  limN→∞ [
1

(2N+1) ∑
n = -N

N
   yn* yn+s ]  ≡  <yn* yn+s>1  .    (32.16) 

Although rx(t) (our particular (32.1) definition) has no normalization factor, we have added 
1

(2N+1)  to the 

definition of rs in order to obtain the finite result rs = <yn* yn+s>1. The label 1 on <...>1 reminds us that 
this is an average over a single sequence yn . Later we shall use <...> without a label to indicate an 
average over an ensemble.  
 
It is convenient to use this shorthand notation for rs, 
 

 rs = 
1

(2N+1) ∑
n = -∞

∞
   yn* yn+s  =  

T1

T  ∑
n = -∞

∞
   yn* yn+s      (32.17) 

 

where T = (2N+1)T1 is the duration of the pulse train. We know that this infinite T is going to cancel 
another T in any "application" so we allow it to exist temporarily, as in (33.22) where T = [2πδ(0)]T1 . 
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The Z transform of rs is given by 
 

 R"(z)  ≡ ∑
s = -∞

∞
   rs z-s  = ∑

s = -∞

∞
  { 

T1

T  ∑
n = -∞

∞
   yn* yn+s } z-s   =  

T1

T  ∑
n = -∞

∞
    ∑

s = -∞

∞
     [yn* zn ] [yn+s z-(n+s)] 

 

      = 
T1

T    ∑
n = -∞

∞
     ∑

m = -∞

∞
   [yn* zn ] [ym z-m]  m ≡ n+s 

 

      = 
T1

T   [ ∑
n = -∞

∞
   yn* zn] [ ∑

m = -∞

∞
  ym z-m ]   =  

T1

T   Y"(z)* Y"(z)  =   
T1

T   | Y"(z) |2 

 
so we have obtained a Z Transform version of the Wiener-Khintchine relation. We may regard this simple 
result as an application of the Z Transform convolution theorem (24.5) to the particular convolution sum 

(32.17) with Δt → 
T1

T  . Here is comparison of the two cases:  

 

 R"(z)  = 
T1

T  | Y"(z) |2  Z Transform Wiener-Khintchine     (32.18) 

 
 Rx(ω) = |X(ω)|2  .  regular Wiener-Khintchine     (32.8) 
 
Here X(ω) is the Fourier Integral Transform of the pulse train x(t), 
 

 x(t)  =  ∑
n = -∞

∞
   yn xpulse(t -tn).        (25.1) 

 
while Y"(z) is the Z transform of the sequence of pulse train amplitudes.  
 
The results of this section apply to finite as well as infinite pulse trains. In a way, this fact is obvious if 
we just pad out the finite pulse train with 0's to make it infinite, but it is still worth showing explicitly. 
The appropriate autocorrelation sequence for a finite pulse train is given by, 
 

 rs  ≡  
1

(2N+1) ∑
n = -N

N
   yn* yn+s   ≡  <yn* yn+s>1  .// finite pulse train   (32.16)' 

 
If we assume yn vanishes outside the range -N to N, then rs vanishes outside the range -2N to 2N,  in 
accord with the analog comment above that rx(t) has twice the width of any finite x(t). We shall 
nevertheless show Σs below as having an infinite range, though we know the range will really be finite 
when the summand is examined.  
 We then compute R"(z) as above 
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 R"(z)  ≡ ∑
s = -∞

∞
   rs z-s   =  ∑

s = -∞

∞
  { 

1
(2N+1) ∑

n = -N

N
   yn* yn+sz-s  } = 

1
(2N+1) ∑

s = -∞

∞
    ∑

n = -N

N
   yn* yn+s z-s 

 

  = 
1

(2N+1) ∑
n = -N

N
    ∑

s = -∞

∞
     yn* yn+s z-s 

 
Now let m = n+s and replace the s sum with an m sum,  
 

  = 
1

(2N+1) ∑
n = -N

N
     ∑

m = ∞

-∞
    yn* ym z-(m-n) 

 
But now the range restrictions from ym on m gives us this final result 
 

  = 
1

(2N+1) ∑
n = -N

N
     ∑

m = -N

N
    yn* ym z-(m-n)   = 

1
(2N+1) ( ∑

n = -N

N
   yn* zn)  ( ∑

m = -N

N
   ym z-m) 

so then 
 

 R"(z)  = 
1

(2N+1)  | Y"(z) |2   = 
T1

T   | Y"(z) |2  where now T = (2N+1)T1.   (32.18)' 

 
which has the exact same form as (32.18).  
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33. Spectral Power Density of a Simple Pulse Train 
 
In subsections (a) through (d) we deal only with simple pulse trains. Along the way, certain facts are 
developed which apply to general as well as simple pulse trains and these will be gathered up and 
summarized in the first part of Section 34.  
 
Comment: Some texts use the phrase "power spectral density" (PSD). Although this wins on Google by a 
ratio of 3 to 1, we still prefer the phrase "spectral power density", and the same for "spectral energy 
density".  
 
(a) Computation of X(ω) and |X(ω)|2 for an infinite Simple Pulse Train 
 
This is the first section in which we use the δ(0) notation of Appendix A which may make the reader feel 
a bit uncomfortable. In subsection (b) we shall repeat everything for a finite pulse train and then take the 
limit N→∞ to obtain the same results without using δ(0). In both sections we shall include the Z 
Transform in passing, but our main work is in the ω variable, not the z variable.  
 
From Section 14 (a) we know the spectrum of an infinite pulse train formed from pulses xpulse(t) 
separated by time T1 ,   
 

 x(t)  =  ∑
n = -∞

∞
   xpulse(t - nT1)         (14.1) 

 X(ω)    =  Xpulse(ω)  ∑
m = -∞

∞
   2π δ(ωT1 - 2πm)  .      (14.4) 

 
We can obtain the same expressions from box (25.4) which summarizes amplitude modulated pulse trains 
by setting all amplitudes to yn  = 1, 
 

 x(t)  = ∑
n = -∞

∞
   yn  xpulse(t -tn)   = ∑

n = -∞

∞
   xpulse(t -tn)      (33.1) 

 
 X(ω)  = (1/T1)Xpulse(ω) Y'(ω)   =   Xpulse(ω) Y"(z)     (33.2) 
 

 Y"(z) =  Y'(ω)/T1 = ∑
n = -∞

∞
  yn e-iωnT1  =  ∑

n = -∞

∞
   e-iωnT1    .     (33.3) 

 
Y'(ω) is the Digital Fourier Transform of yn = 1, and Y"(z) is the Z Transform, where z = eiωT1 . 
 In (33.3) we then use (13.2) 
 

 ∑
n = -∞

∞
  e±ink  = ∑

m = -∞

∞
  2πδ(k - 2πm) -∞  < k < ∞      (13.2) 
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so that (33.3) becomes 
 

 Y"(z) =  Y'(ω)/T1 =  ∑
n = -∞

∞
   e-iωnT1  = ∑

m = -∞

∞
  2πδ(ωT1 - 2πm)     (33.4) 

 
and then (33.2) says 
 

 X(ω)   =  (1/T1)Xpulse(ω) Y'(ω)    =    Xpulse(ω) ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)   (33.5) 

 
in agreement with (14.4) quoted just above (33.1).  
  
To find the power spectrum of a signal x(t), our first task is to compute | X(ω) |2.  From (33.2) we get 
 
 |X(ω)|2  =  |Xpulse(ω)|2 (1/T1)2 |Y'(ω)|2   =   |Xpulse(ω)|2 | Y"(z) |2 . z = eiωT1 (33.6) 
  
We therefore must deal with the following object, using (33.4),  
 

 | Y"(z) |2   =  (1/T1)2 |Y'(ω)|2   =  [  ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)   ] 2  ,    (33.7) 

 
and we are now faced with the issue of squaring delta functions. Formally these objects don't exist in the 
realm of distribution theory, but (as discussed in Appendix A) we can deal with them in an ad hoc way 
which proves to be useful. Consider,  
 

   [  ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)   ] 2   = ∑

m = -∞

∞
  2πδ(ωT1 - 2πm) ∑

n = -∞

∞
  2πδ(ωT1 - 2πn) 

 

  = ∑
m = -∞

∞
    ∑

n = -∞

∞
  2πδ(ωT1 - 2πm) 2πδ(ωT1 - 2πn) . 

 
Looking at the product of the two delta functions, there can be no contribution to the double sum unless m 
= n, so we continue 

  = ∑
m = -∞

∞
    2πδ(ωT1 - 2πm) 2πδ(0)   =  [2πδ(0)] ∑

m = -∞

∞
    2πδ(ωT1 - 2πm) 

so that 

   [  ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)   ] 2  =  [2πδ(0)] ∑

m = -∞

∞
    2πδ(ωT1 - 2πm) .   (33.8) 

 
The object δ(0) is formally undefined, but in Appendix A we ascribe the meaning that 2πδ(0) = 2N+1 in 
the limit that N→ ∞ and we can always "undo the limit" when necessary. We shall firm up this idea in 
section (b) directly below. So we have shown then that 
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 | Y"(z) |2   =  (1/T1)2 |Y'(ω)|2  =  [2πδ(0)] ∑
m = -∞

∞
    2πδ(ωT1 - 2πm)    (33.9) 

or 

 
|Y"(z)|2

 [2πδ(0)]   =  (1/T1)2 
|Y'(ω)|2

 [2πδ(0)]  = ∑
m = -∞

∞
   2πδ(ωT1 - 2πm)  .     (33.10) 

  
Then from (33.6) 
 

 
|X(ω)|2

 [2πδ(0)]    =   |Xpulse(ω)|2 
|Y"(z)|2

 [2πδ(0)]   =  |Xpulse(ω)|2 (1/T1)2
|Y'(ω)|2

 [2πδ(0)] 

 

             =   |Xpulse(ω)|2 ∑
m = -∞

∞
    2πδ(ωT1 - 2πm) .     (33.11) 

 
We shall now repeat the above set of steps for a finite pulse train.  
 
(b) Computation of X(ω) and |X(ω)|2 for a finite Simple Pulse Train 
 
Our finite pulse train always has pulses ranging from n = -N to N instead of from n = -∞ to ∞. We start 
off exactly as in the previous section but with limited sums,  
 

 x(t)  = ∑
n = -N

N
   yn  xpulse(t -tn)   = ∑

n = -N

N
   xpulse(t -tn)      (33.12) 

 
 X(ω)  = (1/T1)Xpulse(ω) Y'(ω)   =   Xpulse(ω) Y"(z)     (33.13) 
 

 Y"(z) = Y'(ω)/T1  = ∑
n = -N

N
  yn e-iωnT1  =  ∑

n = -N

N
   e-iωnT1 .    (33.14) 

 
In the last line we then use (13.3),  
 

 ∑
n = -N

N
   eink   = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }   ≡  2π δ5(k,N)   -∞  < k < ∞  (13.3) 

 
where δ5 is a periodic delta function model discussed in Appendix A (b). Equation (33.14) becomes 
 

 Y"(z) =  Y'(ω)/T1 = ∑
n = -N

N
   e-iωnT1     =  2π δ5(ωT1,N)     (33.15) 

 
and then equation (33.13) says 
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 X(ω)  = Xpulse(ω) 2π δ5(ωT1,N) .        (33.16) 
 
This δ5 is periodic with period 2π and has identical peaks separated by 2π. For finite N, these are peaks of 
finite width and height. Squaring, we find 
 
 | X(ω) |2 =  | Xpulse(ω) |2  [2π δ5(ωT1,N)]2   .      (33.17)  
 
Recalling the definition of the δ6 delta function model from Appendix A (A.20),  
 

 2π δ6(k,N) ≡   
[2πδ5(k,N)]2

(2N+1)           (A.20) 

 
we obtain 
 

 
|X(ω)|2

(2N+1)  =  | Xpulse(ω) |2  2π δ6(ωT1,N)        (33.18) 

 
and this is the finite pulse train result. We can then take the limit N→∞ and make use of (A.21), 
 

 limN→∞ δ6(ωT1,N)  = ∑
m = -∞

∞
  δ(ωT1 - 2πm)       (A.21) 

 
to find that 
 

 limN→∞  [
|X(ω)|2

(2N+1)]   =   | Xpulse(ω) |2  ∑
m = -∞

∞
  2π δ(ωT1 - 2πm)     (33.19) 

 
and this replicates (33.11) with the promised connection 2πδ(0) = limN→∞ (2N+1).  
  
It is useful now to provide some side-by-side comparisons of results  :  
 

 Y"(z) =  Y'(ω)/T1 =  ∑
n = -∞

∞
   e-iωnT1  = ∑

m = -∞

∞
  2π δ(ωT1 - 2πm)  infinite   (33.4) 

 Y"(z) =  Y'(ω)/T1 = ∑
n = -N

N
   e-iωnT1     =  2π δ5(ωT1,N)  finite   (33.15) 

 

 X(ω)   = Xpulse(ω) ∑
m = -∞

∞
  2π δ(ωT1 - 2πm)    infinite   (33.5) 

 X(ω)   = Xpulse(ω)    2π δ5(ωT1,N) .    finite   (33.16) 
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|X(ω)|2

 [2πδ(0)]    =   |Xpulse(ω)|2 ∑
m = -∞

∞
   2π δ(ωT1 - 2πm)   infinite   (33.11) 

   
|X(ω)|2

(2N+1)    =  | Xpulse(ω) |2  2π δ6(ωT1,N)    finite    (33.18) 

 

One can interpret 
|X(ω)|2

 [2πδ(0)]  as the value of |X(ω)|2 per pulse in an infinite pulse train. 

 
(c) Spectral Power Density of a Simple Pulse Train 
 
In this section, everything is in the frequency domain, nothing is in the time domain.  
 
Recall from (32.6) that  
 
 E(ω) ≡ |X(ω)|2/2π = energy density in the ω-domain   (joule-sec)   (32.6) 
    
 E(ω)dω = energy in dω      (joules)   
   
where E(ω) is the spectral energy density of signal x(t) whose Fourier Transform is X(ω).  
 If we divide E(ω) by 2N+1 or 2πδ(0) we obtain the pulse train's average spectral energy density per 
pulse, which is the same as the energy density of an average pulse in the pulse train. Using our two 
expressions above for infinite and finite pulse trains, we then find 
 

 
E(ω)

[2πδ(0)]  = 
|X(ω)|2

2π[2πδ(0)]  = 
1

2π |Xpulse(ω)|2 ∑
m = -∞

∞
   2πδ(ωT1 - 2πm) infinite 

 
E(ω)

(2N+1)  = 
|X(ω)|2

2π(2N+1)    = 
1

2π  | Xpulse(ω) |2  2π δ6(ωT1,N) . finite   (33.20) 

 
If we divide the spectral energy density of the average pulse by T1, we obtain the spectral power density 
of an average pulse, and this is the same as the average spectral power density of the pulse train. Thus,  
 

 P(ω)   ≡ 
E(ω)

T1[2πδ(0)]  = 
|X(ω)|2

2πT1[2πδ(0)]  = 
1
2π |Xpulse(ω)|2 (1/T1) ∑

m = -∞

∞
    2πδ(ωT1 - 2πm)     infinite 

 P(ω)   ≡ 
E(ω)

T1[2N+1]  = 
|X(ω)|2

2πT1[2N+1]    = 
1
2π |Xpulse(ω)|2 (1/T1)  2π δ6(ωT1,N)   .           finite  

             (33.21) 
 
If is perhaps helpful to define 
 

 T ≡ 
⎩
⎨
⎧   [2πδ(0)]T1     infinite pulse train
 (2N+1)T1      finite pulse train   .      (33.22) 

 
Then (33.21) maybe be restated 
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 P(ω)   ≡ 
E(ω)

T   = 
|X(ω)|2

2πT   = 
1

2π |Xpulse(ω)|2 (1/T1) ∑
m = -∞

∞
    2πδ(ωT1 - 2πm)      infinite 

 P(ω)   ≡ 
E(ω)

T   = 
|X(ω)|2

2πT   = 
1

2π |Xpulse(ω)|2 (1/T1)  2π δ6(ωT1,N)   .   finite  (33.23) 

 
Meanwhile, our xpulse(t) which lasts only for duration T1 itself has an energy and power density,  
 

 Ppulse(ω)   ≡ 
Epulse(ω)

T1
  = 

|Xpulse(ω)|2

2πT1
   .      (33.24) 

 
Note:  Even if xpulse(t) is wider than T1 as the Gaussians are in Fig 14.2, the pulse is associated with the 
interval of width T1, and Xpulse(ω) involves the time integral over all of xpulse(t). It is convenient to 
think of the pulse as the black curve in Fig 14.2, in which case the pulse really fits within T1.  
 
We can then write (33.23) in the following compact form 
 

 P(ω)   ≡ Ppulse(ω) ∑
m = -∞

∞
   2πδ(ωT1 - 2πm)    joules  infinite 

 P(ω)   ≡ Ppulse(ω)  2π δ6(ωT1,N)   joules  finite   (33.25) 
 
Notice that δ(ωT1-2πm) and δ6(ωT1,N) are both dimensionless, so the dimensions in each equation 
trivially match. A power density P(ω) has dimensions of energy = joules, so that P(ω)dω then has the 
dimensions of joules/sec = watts, and this is the pulse train power contained in interval dω of the 
spectrum.  
 
For the infinite pulse train, we are always allowed to write 
 
 2π δ(ωT1 - 2πm)  = (2π/T1) δ(ω - m(2π/T1))  = ω1 δ(ω - mω1) ω1 ≡  2π/T1 

 
to get 

 P(ω)   ≡ Ppulse(ω) ω1 ∑
m = -∞

∞
   δ(ω - mω1)    infinite   (33.26) 

  
which shows more explicitly that the power lines occur at the harmonics ω = mω1. Recall now these 
earlier facts,  
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 c(ω) ≡ (1/T1)Xpulse(ω)         (14.14) 
 
 cm  ≡  c(mω1) =  (1/T1)Xpulse(mω1)  .       (14.10), (14.8) 
  
For the infinite pulse train we can then write, using (33.24),  
 

 P(ω)   ≡ Ppulse(ω) ω1 ∑
m = -∞

∞
   δ(ω - mω1)  =  

|Xpulse(ω)|2

2πT1
  

2π
T1

  ∑
m = -∞

∞
   δ(ω - mω1) 

 

   =  
|Xpulse(ω)|2

T1
2  ∑

m = -∞

∞
   δ(ω - mω1)   =  |c(ω)|2 ∑

m = -∞

∞
   δ(ω - mω1)   =  ∑

m = -∞

∞
   |c(mω1)|2 δ(ω - mω1) 

so that 

 P(ω)  = ∑
m = -∞

∞
   |cm|2 δ(ω - mω1).         (33.27) 

 
This gives the power spectrum of a simple pulse train in terms of the complex Fourier Series coefficients 
cm.   
 Recall from box (15.12) that Dim(cm) = Dim[x(t)] = volts (say), so |cm|2 = watts into a 1Ω resistor, and 
since δ(ω - mω1) has dimensions sec, |cm|2 δ(ω - mω1) then has dimensions watt-sec = joules, as befits 
any P(ω) object.  
 If we assume x(t) is a real pulse train, then X(ω) is Hermitian, X(-ω) = [ X(ω)]*  by (7.3), which 
means 
 
 c-m = (1/T1)Xpulse(-mω) = (1/T1)[Xpulse(mω)]*  = cm*  
so 
  |c-m|2 = |cm|2  x(t) real        (33.28) 
 
and then we can fold the negative part of the sum in (33.27) to get 
 

 P(ω)  =  ∑
m = -∞

∞
   |cm|2 δ(ω - mω1)   = |c0|2 δ(ω)  + 2 ∑

m =1

∞
  |cm|2 δ(ω - mω1) .   (33.29) 

 
Finally, recalling from our Fourier Series box (15.2) that cm =  [ am - ibm ]/2  and b0= 0,  we get 
 

 P(ω)  =  a02 δ(ω)  + (1/2) ∑
m =1

∞
  (am2+bm2) δ(ω - mω1)   .     (33.30) 

 
(d) Average Power P of a Simple Pulse Train 
 
We seek an expression for the average power P in a general pulse train. This is of course a time domain 
quantity, not a frequency domain quantity.  
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 P  = [ total energy in pulse train / time duration of pulse train  ]   = average pulse train power 
 

  = (1/T) ∫
-∞

 ∞ dt |x(t)|2 =  ∫
-∞

 ∞ dω  
|X(ω)|2

2πT    // from (32.4) with R = 1Ω 

so 

 P  =  ∫
-∞

 ∞ dω P(ω) .    // from (33.23)    (33.31) 

 
This is certainly reasonable since P(ω) is the average spectral power density of the pulse train. Recall that 
|x(t)|2 is the "instantaneous power" of signal x(t) at some instant of time t, so P is the time average of this 
instantaneous power.  
 
For the special case of an infinite simple pulse train, we found above that 
 

 P(ω) = ∑
m = -∞

∞
   |cm|2 δ(ω - mω1)  = a02 δ(ω)  + (1/2) ∑

m =1

∞
  (am2+bm2) δ(ω - mω1)  . 

 
Therefore the power in a simple pulse train is given by (33.31) as 
 

 P  =  ∑
m = -∞

∞
   |cm|2   = a02 + (1/2) ∑

m =1

∞
  (am2+bm2) .      (33.32) 
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34. Spectral power density of a General Pulse Train 
 
(a) General Pulse Train results and connection with the Autocorrelation Function 
 
Certain results of the previous section apply to general pulse trains. They are gathered here:  
 
 E(ω) ≡ |X(ω)|2/2π = energy density in the ω-domain   (joule-sec)   (32.6)  
 

 T ≡ 
⎩
⎨
⎧   [2πδ(0)]T1     infinite pulse train
 (2N+1)T1      finite pulse train         (33.22) 

 

 P(ω)   ≡ 
E(ω)

T   = 
|X(ω)|2

2πT           (33.23) 

 

 Ppulse(ω)   ≡ 
Epulse(ω)

T1
  = 

|Xpulse(ω)|2

2πT1
         (33.24) 

 

 P  =  ∫
-∞

 ∞ dω P(ω) .         (33.31) 

 
We now bring the autocorrelation function into the discussion, but only in passing. Let x(t) be an arbitrary 
but real pulse train, and recall that 
 

 rx(t)  ≡  ∫
-∞

 ∞  dt' x(t') x(t' + t)  .        (32.1) 

 
Then, using T from (33.22),  
 

 rx(0)  ≡  ∫
-∞

 ∞  dt' x(t')2  = P T  =  E  =  total energy in the pulse train    (34.1) 

 
so the average pulse train power maybe written in terms of the autocorrelation function evaluated at t = 0,  
 
 P = rx(0)/T .          (34.2) 
 
We diagonalized (32.1) treated as a convolution equation to obtain 
 
 |X(ω)|2 = Rx(ω),  
 
called the Wiener-Khintchine relation. Here Rx(ω) is the Fourier Integral Transform of the autocorrelation 

function rx(t) of x(t). Then from (33.23) that P(ω) = 
|X(ω)|2

2πT  we get 

 
 P(ω) = Rx(ω)/ (2πT) .         (34.3) 
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In this way, both P and P(ω) can be expressed in terms of the autocorrelation function.  Thus, one 
approach to finding P and P(ω) for a pulse train is to try and determine rx(t).  
 Here then is a box summarizing all the general pulse train results:  
 
 
 Energy and Power Properties of a General Pulse Train     (34.4) 
 
 E(ω) ≡ |X(ω)|2/2π = energy density in the ω-domain     (joule-sec)  (32.6)  
 

 T ≡ 
⎩
⎨
⎧   [2πδ(0)]T1     infinite pulse train
 (2N+1)T1      finite pulse train       (33.22) 

 

 P(ω)   ≡ 
E(ω)

T   = 
|X(ω)|2

2πT    =  Rx(ω)/ (2πT) joules    (33.23) and (34.3) 

 

 Ppulse(ω)   ≡ 
Epulse(ω)

T1
  = 

|Xpulse(ω)|2

2πT1
       (33.24) 

 P  =  ∫
-∞

 ∞ dω P(ω) = rx(0)/T watts     (33.31) and (34.2) 

 
 If P(f)df = P(ω)dω = P(ω) 2πdf , then P(f)  = 2πP(ω).  
 
 
(b) Spectral power density for a General Pulse Train 
 
In Section 33 (d) we dealt with simple pulse trains. Here we consider the more general amplitude 

modulated pulse train. In all equations, one can replace ∑
n = -∞

∞
   by ∑

n = -N

N
  to adapt the equation to a finite 

pulse train instead of an infinite one.  We start then with  
 

 x(t)  = ∑
n = -∞

∞
   yn  xpulse(t -tn)      (25.1)   (34.5) 

 
 X(ω)  = (1/T1)Xpulse(ω) Y'(ω)   =   Xpulse(ω) Y"(z)  (25.3)   (34.6) 
 

 Y"(z) =  Y'(ω)/T1 = ∑
n = -∞

∞
  yn e-iωnT1   .    (24.2)   (34.7) 

 
To find the frequency-domain power spectrum of a signal x(t), our first task is to compute | X(ω) |2.  From 
(34.6) we get 
 
 |X(ω)|2  =  |Xpulse(ω)|2 (1/T1)2 |Y'(ω)|2   =   |Xpulse(ω)|2 | Y"(z) |2  z = eiωT1 (34.8) 
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We therefore must deal with the following object, using (34.7),  
 

 | Y"(z) |2   =  (1/T1)2 |Y'(ω)|2   =  |  ∑
n = -∞

∞
  yn e-iωnT1  | 2  

 

  = ∑
n = -∞

∞
  yn e-iωnT1 ∑

m = -∞

∞
  ym* e+iωmT1   = ∑

n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1             (34.9) 

so that 

 | X(ω) |2   = | Xpulse(ω) |2 ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1 .    (34.10) 

 
From box (34.4) we then have 
 
 E(ω) ≡ |X(ω)|2/2π  =  (1/2π) | Xpulse(ω) |2 | Y"(z) |2 

             =  (1/2π) | Xpulse(ω) |2 ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1   (34.11) 

 P(ω)   ≡ 
E(ω)

T       = (1/2πT) | Xpulse(ω) |2| Y"(z) |2 

           = (1/2πT) | Xpulse(ω) |2 ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1   (34.12) 

 
which we can write as (again using box (34.4) results)  
 

 E(ω) =  T1 Ppulse(ω) | Y"(z) |2  =  T1 Ppulse(ω)  ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1  (34.13)  

 P(ω)  = Ppulse(ω) 
T1

T   | Y"(z) |2  =  Ppulse(ω) 
T1

T   ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1   (34.14) 

 

 P  =  ∫
-∞

 ∞ dω P(ω) .       (33.31)  (34.15) 

 

Using the Z Transform Wiener-Khintchine relation (32.18) that R"(z)  = 
T1

T  | Y"(z) |2 we get 

 
 E(ω) =  T1 Ppulse(ω) | Y"(z) |2  = T Ppulse(ω) R"(z)     (34.13a) 
 

 P(ω)  = Ppulse(ω) 
T1

T   | Y"(z) |2  = Ppulse(ω) R"(z)      (34.14a) 

 
where R"(z) is the Z transform of the autocorrelation sequence rs obtained from the yn.  
 Not knowing details of the yn there is not much else we can do in these expressions.  
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(c) Pulse Trains with Repeated Sequences 
 
Consider a pulse train composed of some general pulse shape xpulse(t) whose amplitudes are repeated 
sequences of A,B. We shall compute the spectrum X(ω) and spectral power density P(ω) by two different 
methods.  
 The first method is more or less brute force, and it reveals a potential pitfall in using the δ(0) notation 
and shows a clean way to avoid the pitfall.  
 The second method, much simpler, is to use the Fourier Series results in box (15.12) applied to the 
repeating sequence.  
 We then state X(ω) and P(ω) for a few special cases including various square waves.  
 Appendix F treats the general case of a repeated sequence {A,B,C,D......}.  
 
Method 1:  Brute Force Calculation of X(ω) and P(ω) for repeated A,B case.  
 
Our starting point is (34.8) with (34.7), where we assume N is large and later we will take N→∞ :  
 
 X(ω)  = (1/T1)Xpulse(ω) Y'(ω)   =   Xpulse(ω) Y"(z)     (34.6) 
 
 
 |X(ω)|2  =  |Xpulse(ω)|2 (1/T1)2 |Y'(ω)|2   =   |Xpulse(ω)|2 | Y"(z) |2  z = eiωT1 (34.8) 
 

 Y"(z) =  Y'(ω)/T1 = ∑
n = -N

N
  yn e-iωnT1.        (34.7) 

 
The main problem is to compute Y"(z) and then square it. We have 
 

 ∑
n = -N

N
  yn e-iωnT1  = A ∑

n even

 
   e-iωnT1    +  B ∑

n odd

 
   e-iωnT1  .      

 
Now process the sums as follows, where  
 

  ∑
n even

 
   e-iωnT1   = ∑

m = -N/2

N/2
   e-iω(2m)T1   where we used n = 2m 

 

  ∑
n odd

 
   e-iωnT1   =  ∑

n = (-N-1)/2

(N-1)/2
  e-iω(2m+1)T1   where we used n = 2m + 1  . 

 
We assume N is very large, so we regard (N±1)/2 ≈ N/2 . We then find 
 

 Y"(z) =  Y'(ω)/T1 = ∑
n = -N

N
  yn e-iωnT1    =  [ A + B e-iωT1] ∑

m= -N/2

N/2
   e-iω(2m)T1 .    



  Chapter 6: Power in Pulse Trains 

  156 

 

We now use (13.3), 
 

 ∑
n = -N

N
   eink   = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }   ≡  2π δ5(k,N) ,  -∞  < k < ∞  (13.3) 

 
to write 
 

 ∑
m= -N/2

N/2
   e-iω(2m)T1  =  2π δ5(2ωT1,N/2) 

 
where δ5 (and δ6 to come soon) are explained in Appendix A (b). Therefore,  
 
 Y"(z)  =  [ A + B e-iωT1] 2πδ5(2ωT1,N/2) .      (34.16) 
 
Using this Appendix A result, 
 

 limN→∞ δ5(k,N)  =    ∑
m = -∞

∞
  δ(k-2πm)         (A.19) 

  
we obtain the N→∞ limit for our spectrum 
 

 Y"(z)  =  [ A + B e-iωT1] 2π ∑
m = -∞

∞
  δ(2ωT1-2πm)   

     =  (1/2)[ A + B e-iωT1] (1/T1)  2π ∑
m = -∞

∞
   δ(ω - mω1/2) 

     =  (1/2) ω1 ∑
m = -∞

∞
  [ A + B (-1)m]  δ(ω-mω1/2)      (34.17) 

 
and correspondingly 
 

 X(ω)  =    Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
   [ A + B(-1)m ] δ(ω - mω1/2) .     (34.18) 

 
There is a certain logic to the [ A + B e-iωT1] factor in (34.17). If we set A = K and B = 0 we get one 
result, and if we set A = 0 and B = K  we get the same result multiplied by e-iωnT1 . The second pulse 
train is just the first pulse train shifted T1 units to the right, and this adds phase e-iωnT1 as in (12.1).  
 
If we were to square (34.18) and use our usual 2πδ(0) = 2N+1 association, we get a result that is off by a 
factor of 2. The reason is that our pre-limit sums are going from -N/2 to N/2, so we would get the right 
answer if we were to adjust and say  2πδ(0) = N+1. Rather than make an arm-waving argument to this 
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effect, it is safer to continue along with our pre-limit expressions, having paused to take the limit for the 
spectrum X(ω) as in (34.18).  
 
So, backing off again from limit, we square (34.16) to get  
 
 |Y"(z)|2 = |A + Be-iωT1|2 [2π δ5(2ωT1,N/2)]2 . 
  
Then from (A.20) applied with N → N/2  
 

 δ6(k,N/2) ≡  
1

2π   
[2πδ5(k,N/2)]2

(N+1)          (A.20) 

 
we get 
 
 |Y"(z)|2 = |A + Be-iωT1|2 [2π δ5(2ωT1,N/2)]2 

or 
|Y"(z)|2

2π(N+1)  = |A + Be-iωT1|2 { 
1

2π   
[2πδ5(2ωT1,N/2)]2

(N+1)  }   =  |A + Be-iωT1|2  δ6(2ωT1,N/2) . 

 
Now for large N we ignore the difference between N and N + 1 and so on, so we divide both sides by 2 to 
get,  
 

|Y"(z)|2

2π(2N+1)   =  (1/2) |A + Be-iωT1|2  δ6(2ωT1,N/2)  .       

 
Notice that a very important factor of 1/2 appears on the right in the last step. We now insert the squared 
pulse spectrum to get 
 

 
|X(ω)|2

2π(2N+1)   =   |Xpulse(ω)|2 
|Y"(z)|2

2π(2N+1)   =  |Xpulse(ω)|2  (1/2) |A + Be-iωT1|2  δ6(2ωT1,N/2)  . 

 

If we divide both sides by T1 the left side is  
|X(ω)|2

2πT   where T is the length of the pulse train and this in 

turn equals P(ω),  all as shown in box (34.4). So for large N we have shown that 
 
 
 P(ω)  =  |Xpulse(ω)|2 (1/T1)(1/2) |A + Be-iωT1|2  δ6(2ωT1,N/2)     
 
  =  Ppulse(ω)(1/2) |A + Be-iωT1|2  2π δ6(2ωT1,N/2)  .     (34.19) 
 
Now at last we take the limit N→∞ and use  
 

 limN→∞ δ6(k,N)  = ∑
m = -∞

∞
  δ(k-2πm)        (A.21) 
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to get our desired infinite pulse train result 
 

 P(ω)  =  Ppulse(ω)(1/2) |A + Be-iωT1|2  ∑
m = -∞

∞
  2π δ(2ωT1 - 2πm) 

      =  Ppulse(ω)(1/4) |A + Be-iωT1|2 (1/T1) ∑
m = -∞

∞
  2π δ(ω - mω1/2)     

      =  Ppulse(ω)(1/4) (1/T1) ∑
m = -∞

∞
   |A + B(-1)m |2 2π δ(ω - mω1/2)    

      =  Ppulse(ω)(1/4) ω1 ∑
m = -∞

∞
   { |A|2 + |B|2 + 2Re(AB*)(-1)m } δ(ω - mω1/2) .  (34.20)  

 
Summarizing the key results:   
 

        Fig 34.1 

 X(ω)  =   Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
   [ A + B(-1)m ] δ(ω - mω1/2) .     (34.18) 

 P(ω)  =  Ppulse(ω) (1/4) ω1 ∑
m = -∞

∞
   { |A|2 + |B|2 + 2Re(AB*)(-1)m } δ(ω - mω1/2) .  (34.20) 

 
Method 2:  Fourier Series Calculation of X(ω) and P(ω) for repeated A,B case. 
 
We regard our A,B pair of pulses as a single pulse xPULSE(t) of width 2T1.  
 

 xPULSE(t)  =  
⎩
⎨
⎧   A xpulse(t)         0 < t < T1
 B xpulse(t-T1)   T1 < t < 2T1

   

 
We then apply the Fourier Series results of box (15.12) but with T1→ 2T1  (so ω1 → ω1/2) 
 

 x(t)  = ∑
n = -∞

∞
  xPULSE(t - n2T1) 

 Cm = (1/2T1)  ∫
0

 2T1  dt xPULSE(t) e-imω1t/2   . 

 
We then calculate Cm as follows 
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 Cm = (1/2T1)  ∫
0

 2T1  dt xPULSE(t) e-imω1t/2   

 

  = (1/2T1) A   ∫
0

 T1  dt xpulse(t) e-imω1t/2  + (1/2T1) B   ∫
T1

 2T1  dt xpulse(t-T1) e-imω1t/2 

 

 = (1/2T1) A   ∫
0

 T1  dt xpulse(t) e-imω1t/2  + (1/2T1) Be-imω1(T1/2)  ∫
0

 T1  dt' xpulse(t') e-imω1t'/2 

 

 = (1/2)  [ A + B (-1)m ]  (1/T1) ∫
0

 T1  dt xpulse(t) e-imω1t/2  

 
 = (1/2)  [ A + B (-1)m ] cm/2 
 
so that 
 
 Cm =  (1/2)  [ A + B (-1)m ] cm/2     
 
where cn are the Fourier coefficients for a simple pulse train made from xpulse(t) pulses. The spectrum 
can then be read from box (14.12) item 3, where we continue to replace T1 → 2T1 ,  
 

 X(ω)  = ∑
m = -∞

∞
   Cm  2π δ(ω - mω1/2) . 

 
But from (14.10) and (14.8) we know that 
 
 cm/2 = (1/T1)Xpulse(mω1/2) 
 
so that 
  
 Cm = (1/2)  [ A + B (-1)m ]  (1/T1)Xpulse(mω1/2)  . 
 
Then 

 X(ω)  = ∑
m = -∞

∞
   { (1/2)  [ A + B (-1)m ]  (1/T1)Xpulse(mω1/2)}   2π δ(ω - mω1/2) 

      = Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
  [ A + B (-1)m ] δ(ω - mω1/2) 

 
which agrees with our Method 1 result (34.18).  
  
Then from  (33.29) we get 
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 P(ω)  =  ∑
m = -∞

∞
   |Cm|2 δ(ω - mω1/2)  

  = ∑
m = -∞

∞
    | (1/T1)Xpulse(mω1/2)  (1/2)  [ A + B(-1)m ] |2 δ(ω - mω1/2)   

  =  (1/T1)2 | Xpulse(ω) |2 (1/4) ∑
m = -∞

∞
   | [ A + B(-1)m ] |2 δ(ω - mω1/2)   // now use (33.24) 

  =  Ppulse(ω) (1/4) ω1 ∑
m = -∞

∞
   { |A|2 + |B|2 + 2Re(AB*)(-1)m } δ(ω - mω1/2) 

  
and this agrees with our Method 1 result (34.20).  
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Special Case 1 :  Symmetric and Square Waves 
 
Suppose A = 1 and B = -1. Then  
 
 { |A|2 + |B|2 + 2Re(AB*)(-1)m }  =  { 1 + 1 - 2(-1)m} = 2 [ 1 - (-1)m ]  . 
 
Our general results were these 

 X(ω)  =    Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
   [ A + B(-1)m ] δ(ω - mω1/2) .     (34.18) 

 P(ω)  = Ppulse(ω) (1/4) ω1 ∑
m = -∞

∞
   { |A|2 + |B|2 + 2Re(AB*)(-1)m } δ(ω - mω1/2)  (34.20) 

which become 

 X(ω)  =    Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
   [ 1 - (-1)m ] δ(ω-mω1/2)  

 P(ω)  = Ppulse(ω) (1/2) ω1 ∑
m = -∞

∞
   { 1 – (-1)m } δ(ω - mω1/2)  

or 
 

        Fig 34.2 

 X(ω)  =    Xpulse(ω) ω1 ∑
m = ±odd

 
   δ(ω - mω1/2)  

 P(ω)  = Ppulse(ω) ω1 ∑
m = ±odd

 
    δ(ω - mω1/2)  .      (34.21) 

 
Square wave pulse train with peak-to-peak = 2 units and period 2T1 
 
 Xpulse(ω) = T1 sinc(ωT1/2)         (9.2) 
 
 Ppulse(ω)  = |Xpulse(ω)|2/ (2πT1) = (1/ω1) sinc2(ωT1/2) .     (34.22) 
 
To apply equations (34.21) we evaluate the above at ω = mω1/2,  ωT1/2  = mπ/2 so sin(mπ/2) = 0 for m 
even and (-1)(m-1)/2  for m odd. Therefore,  
 
 Xpulse(mω1/2) = T1 (-1)(m-1)/2 / (mπ/2)  = (2/π) T1 (-1)(m-1)/2 (1/m)  =  (4/ω1) (-1)(m-1)/2 (1/m) 
 
 Ppulse(mω1/2) = (1/ω1) (-1)(m-1)/ (mπ/2)2 = (2/π)2(1/ω1) (-1)(m-1)(1/m2)  . 
 
For m odd, (-1)(m-1) = 1, so we get 
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         Fig 34.3 

 X(ω)  =    4 ∑
m = ±odd

 
    (-1)(m-1)/2 (1/m)δ(ω - mω1/2)  

 P(ω)  =  (2/π)2 ∑
m = ±odd

 
    (1/m2) δ(ω - mω1/2) .      (34.23) 

 
Square wave pulse train with peak-to-peak = 1 units and period 2T1 
 
In (34.23) X goes to 1/2 and P goes to 1/4 : 
 

        Fig 34.4 

 X(ω)  =    2 ∑
m = ±odd

 
    (-1)(m-1)/2 (1/m)δ(ω - mω1/2)  

 P(ω)  =  (1/π)2 ∑
m = ±odd

 
    (1/m2) δ(ω - mω1/2) .      (34.24) 

 
Square wave pulse train with peak-to-peak = 2 units and period T1 : 
 
In (34.23) replace ω1 → 2ω1 :  
 

        Fig 34.5 

 X(ω)  =    4 ∑
m = ±odd

 
    (-1)(m-1)/2 (1/m)δ(ω - mω1)  

 P(ω)  =  (2/π)2 ∑
m = ±odd

 
    (1/m2) δ(ω - mω1)  .       (34.25) 

 
Square wave pulse train with peak-to-peak = 1 unit and period T1 : 
 
In (34.25) X goes to 1/2 and P goes to 1/4 : 
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        Fig 34.6 

 X(ω)  =    2 ∑
m = ±odd

 
    (-1)(m-1)/2 (1/m)δ(ω - mω1)  

 P(ω)  =  (1/π)2 ∑
m = ±odd

 
    (1/m2) δ(ω - mω1)  .       (34.26) 

 
In (17.9) we showed that for the above square wave cm = (1/πm) (i)1-m for odd m. Then (17.4) says 
 

 X(ω)  = ∑
m = ±odd

 
  cm 2πδ(ω - mω1 ) = ∑

m = ±odd

 
  (1/πm) (i)1-m 2πδ(ω - mω1 )  

  =  2 ∑
m = ±odd

 
  (1/m) (-1)(m-1)/2 δ(ω - mω1 )  .   // agrees with (34.26) 

 
The power density from (33.27) is 
 

 P(ω)  =  ∑
m = -∞

∞
   |cm|2 δ(ω - mω1)  = ∑

m = ±odd

 
   (1/πm)2 δ(ω - mω1)  . // agrees with (34.26) 

 
Special Case 2 :  Every other pulse is zero.  
 
Here A = 1 and B = 0.  Our general results (34.18) and (34.20) become 
 

        Fig 34.7 

 X(ω)  =  Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
    δ(ω - mω1/2)   

 P(ω)  =  Ppulse(ω) (1/4) ω1 ∑
m = -∞

∞
    δ(ω - mω1/2)  .      (34.27) 

 
Inserting the same square wave pulse shown in (34.22) this becomes 
 

 X(ω)  =        π ∑
m = -∞

∞
    sinc(mπ/2) δ(ω - mω1/2)   

 P(ω)  =   (1/4) ∑
m = -∞

∞
    sinc2(mπ/2)  δ(ω - mω1/2)  . 

 
Separating out the m = 0 term and using sin(mπ/2) = (-1)(m-1)/2 we get 
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         Fig 34.8 

 X(ω)  =    2 ∑
m = ±odd

 
     (1/m)  (-1)(m-1)/2 δ(ω - mω1/2)  + (1/2) 2πδ(ω) 

 P(ω)  =  (1/π2) ∑
m = ±odd

 
    (1/m2)  δ(ω - mω1/2)  +  (1/4) δ(ω)     (34.28) 

 
These match (34.24) but here we have DC terms.  
 
Special Case 3 : Recovering the Simple Pulse Train Spectra 
 
Here A = 1 and B = 1.  Our general results (34.18) and (34.20) become 
 

 X(ω)  = Xpulse(ω) (1/2) ω1 ∑
m = -∞

∞
   [ 1 + (-1)m ] δ(ω - mω1/2)      (34.18) 

 P(ω)  = Ppulse(ω) (1/2) ω1 ∑
m = -∞

∞
   { 1 + (-1)m } δ(ω - mω1/2)     (34.20) 

or 

 X(ω)  = Xpulse(ω) ω1 ∑
m = ±even

 
    δ(ω - mω1/2)    

 P(ω)  = Ppulse(ω) ω1 ∑
m = ±even

 
   δ(ω - mω1/2)  

or 

        Fig 34.9 

 X(ω)  = Xpulse(ω) ω1 ∑
m = -∞

∞
    δ(ω - mω1)   // agrees with (14.5) for simple pulse train 

 P(ω)  = Ppulse(ω) ω1 ∑
m = -∞

∞
   δ(ω - mω1)  // agrees with (33.26) for simple pulse train 
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Exercises for the Reader:   
 
(a) If the repeating amplitude sequence is A,B,C show that 
 

 X(ω)  =  Xpulse(ω) (1/3)[ A + B e-iωT1 + C e-i2ωT1 ] ω1 ∑
m = -∞

∞
   δ(ω - mω1/3) 

 P(ω)  = Ppulse(ω) (1/3)2 |A + Be-iωT1  + C e-i2ωT1|2  ω1 ∑
m = -∞

∞
  δ(ω - mω1/3)  .  (34.29) 

 
(b) If the repeating sequence is y0,y1....yP-1 show that 
 

 X(ω)  =  Xpulse(ω)  
1
P  [ ∑

k = 0

P-1
  yke-ikωT1 ]  ω1 ∑

m = -∞

∞
   δ(ω - mω1/P) 

 P(ω)  = Ppulse(ω)  
1
P2  | ∑

k = 0

P-1
  yke-ikωT1 |2  ω1 ∑

m = -∞

∞
   δ(ω - mω1/P) .    (34.30) 

 
These results can be expressed in terms of the Z Transform YP"(z)  = Σk=0P-1 yk z-k of the repeated 
sequence, where z =  eikωT1 :  

 X(ω)  =  Xpulse(ω)  
1
P    YP"(z)     ω1 ∑

m = -∞

∞
   δ(ω - mω1/P) 

 P(ω)  =  Ppulse(ω)  
1
P2  | YP"(z) |2  ω1 ∑

m = -∞

∞
   δ(ω - mω1/P)     (34.31) 

 
Hint: These two equations are derived in Appendix F as (F.12) and (F.23).  
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35. Statistical Pulse Trains 
 
(a) What is a Statistical Pulse Train? 
 
Suppose we use a logic analyzer or digital scope to capture a 1 GHz PAM signal (zeros and ones) for 1 
μsec so a sequence of K = 1,000 symbols ym are stored. We could compute the average value for this 
sequence and we might find <ym>1 = 0.55. Here <...>1 refers to a horizontal average over a single pulse 
train amplitude sequence. By its definition, this average cannot depend on the index m, we are just 
computing an average of the ym values in the sequence,   
 
 <ym>1  = (1/K) Σm=1K ym . 
 
Now it might be that during this 1 μsec, there was something unusual about the data being sent, so that 
this measurement of <ym>1 = 0.55 is not really representative over a longer term. One alternative would 
be to capture a much longer sequence. Rather than do this, our approach will be to capture very many 1 
μsec pulse trains and form an ensemble of these representative pulse trains. Perhaps we do this for a 
whole minute, so the ensemble then has a huge number (call it I) of pulse trains. We then write down 
these amplitude sequences in a vertical list on a very long piece of paper, one sequence below the next. 
We then number the positions in the sequences 1 to N and we then define <ym> as the vertical average 
through this ensemble of the sequences in position m. This vertical average is written 
 
 <ym>  = (1/I) Σi=1I ym(i)  
 

and in theory this could be different for different columns m. For example, consider this ensemble of 
sequences which has K = 6 and I = 3:  
 
 1  2  3  4  5  6 
 a  b  c  d  e  f  sequence #1 
 a' b' c' d' e' f'  sequence #2 
 a" b" c" d" d" f"  sequence #3   Ensemble  Fig 35.1 
 
We would have  
 
 <ym>1 = (a+b+c+d+e+f)/6.  // horizontal average for the first sequence 
 <y3>   = (c + c' + c")/3  // vertical average for column 3 
 
Our pulse train sequence has a random variable Ym associated with each pulse train position, m = 
1,2...K, and the vertical average <ym> is the expected value of Ym over the ensemble, normally written 
<ym> = E(Ym). The experiment associated with Ym is the generation of a pulse train by some Apparatus, 
the experiment is run many times, and the outcomes for random variable Ym are the values of the symbols 
located in position m of these pulse trains. See Appendix G for the meaning of "random variable".  
 The ensemble is characterized by various statistical properties, such as E(Ym) or E(YnYmYk), each 
being a vertical average down through the ensemble. Our statistical pulse train is an idealized pulse train 
whose amplitudes form a statistical sequence whose statistics ( like E(Ym)  and E(YnYmYk) ) exactly 
match those of the ensemble. It is not any particular member of the ensemble, since any member might 
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deviate somehow. And it is certainly not the average of the pulse trains in the ensemble, since this average 
pulse train would have amplitudes ym = <ym> which has nothing to do with anything ( and also would 
have illegal symbols, e.g., ym = 1/2). If K were very large, a pulse train of the ensemble might come close 
to being a statistical pulse train.  
 Common usage refers to our statistical pulse train as a random pulse train whose sequence of 
amplitudes is a random sequence. The problem with this terminology is that the word "random" suggests 
for example that <ym> = the mean value of Ym in the ensemble = 1/2. That is to say, the word random 
suggests a flat distribution where p(1) = 1/2 and p(0) = 1/2. But if p(1) = 1/3 and p(0) = 2/3, our ensemble 
would still be associated with a statistical pulse train, Any value of p ≡ p(1) would describe a statistical 
pulse train, along with the other statistical properties. This same subtle implication of the word random 
appears in Appendix G on "random variables" and basic probability theory.  
 In what follows, we shall only be concerned with the first and second order statistics of the statistical 
pulse train, which are <ym>  = E(Ym) and <ymyn> = E(YmYn).  
 
How many member pulse trains must the ensemble contain? Could it have only two pulse trains? The 
answer is that the ensemble could be small, but then the statistical properties of the random variables as 
discovered by the ensemble would have a large amount of error. For example, for column n there is some 
normalized distribution pYn(yn) associated with the random variable Yn. Suppose yn took values from 
{1,2,3,4,5,6}, and suppose pYn(yn) were a flat distribution. Here might be the different views of pYn(yn) as 
obtained from ensembles with I = 2, 50 and 1000 pulse trains :  
 

 
 
Since E(Yn) = Σn yn pYn(yn), the error propagates into this and all other expectation values associated 
with the statistical pulse train. For any required degree of accuracy δ of the statistical quantities, we can 
find some value Id such that for I > Iδ the ensemble will realize that accuracy. In theory, we just imagine 
that I = ∞, and then everything is perfect.  
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(b) The region of support for ymym+s for a finite pulse train 
 
The product of amplitudes ymym+s appears many times below. For a finite pulse train it is useful to see 
where the product vanishes and where it does not vanish in terms of m and s. In the previous section we 
discussed a finite pulse train having yn with n = 1 to K, but now we instead have yn with n = -N to N so 
our finite pulses train now have (2N+1) amplitudes yn. We imagine the finite pulse train embedded in an 
infinite pulse train that has all zeros to the left of -N and to the right of +N.  In this case we may write for 
this infinite pulse train, 
 
  ymym+s =  ymym+s θ(m ≤ N)θ(m ≥-N) θ(m+s ≤ N)θ(m+s ≥ -N) 
 
   =  ymym+s θ(m ≤ N)θ(m ≥-N) θ(s ≤ N-m)θ(s ≥ -N-m)    (35.1a)  
 
where we use an inequality-style Heaviside step function θ. The product of the four θ functions and thus 
the quantity ymym+s vanishes outside the gray parallelogram in this drawing of the (m,s) plane,  
 

       Fig 35.2 
 
Thus, assuming m is in range -N to N, we may write 
 

  ymym+s  = 
⎩
⎨
⎧  ymym+s      for -N-m ≤ s ≤ N- m 
 0              for  s < -N-m or s > N-m       (35.1b) 

 
Below we shall be interested in the following quantity (the autocorrelation sequence), 

 rs = < ymym+s>1  = 
1

2N+1 ∑
m= -∞

∞
   ymym+s  // a horizontal average    (35.2) 
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   = 
1

2N+1 ∑
m= -∞

∞
   ymym+s θ(m ≤ N)θ(m ≥-N) θ(s ≤ N-m)θ(s ≥ -N-m) 

   = 
1

2N+1 ∑
m= -∞

∞
   ymym+s θ(m ≤ N)θ(m ≥-N) θ(m ≤ N-s)θ(m ≥ -N-s) 

  

  = 
1

2N+1 ∑
m = max(-N,-N-s)

min(N,N-s)
           ymym+s .       (35.3) 

 
The range of m appearing in this sum is represented by a red line in the figure for two positive values of s. 
For s > 2N there is no range left so rs = 0, and the same when s < -2N. Thus, we may regard 
 
 rs = rs θ(s≤2N)θ(s≥-2N) .         (35.4) 
 
Another quantity of interest, R"(z) = Z Transform of rs, therefore has this restricted sum range for a finite 
pulse train, 
 

 R"(z)  = ∑
s = -∞

∞
   rs z-s  = ∑

s = -2N

2N
   rs z-s  .       (35.5) 

 
Notice that  <ymym+s>1 = rs does not depend on m due to its "horizontal" average definition shown in 
(35.2). The non-dependence of <ymym+s>1 on m has nothing to do with "stationarity" as will be discussed 
below. That is, <ymym+s>1 is for a particular pulse train, it is not an ensemble average.  
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(c) The Spectral Power Density for a specific pulse train 
 
There are many ways to write the power density expression for a pulse train, see (32.18) and (34.14a). For 
an infinite pulse train we may write (reader should perhaps ponder each form),  
 

    P(ω) = Ppulse(ω) ∑
s = -∞

∞
  <ymym+s>1 z-s = Ppulse(ω) ∑

s = -∞

∞
   rs z-s 

        = Ppulse(ω) R"(z) = Ppulse(ω) 
T1

T  | Y"(z) |2  rs = 
T1

T  ∑
m= -∞

∞
   ymym+s 

        = Ppulse(ω) 
T1

T   ( ∑
m = -∞

∞
  ym z-m )* ( ∑

n = -∞

∞
  yn z-n )   

        = Ppulse(ω) 
T1

T   ( ∑
m = -∞

∞
    ∑

n = -∞

∞
   ym yn zm-n )  // z = eiωT1  so (z-m)*  = zm 

        = Ppulse(ω) 
T1

T   ( ∑
m = -∞

∞
    ∑

s = -∞

∞
   ym ym+s z-s )   P(ω) INFINITE  (35.6) 

 
Recall that T is the duration of the infinite pulse train, written as T = 2πδ(0) in (33.22). This T always 
cancels away, so we are not concerned about its infinite nature. It is a limit (2N+1)T1 as N→∞.  
 
For a finite pulse train we find, using (35.3) and (35.5) and Fig 35.2,  
 

    P(ω) = Ppulse(ω) ∑
s = -2N

2N
  <ymym+s>1 z-s = Ppulse(ω) ∑

s = -2N

2N
   rs z-s 

        = Ppulse(ω) R"(z) = Ppulse(ω) 
1

2N+1 | Y"(z) |2  rs = 
1

2N+1 ∑
m = max(-N,-N-s)

min(N,N-s)
         ymym+s 

        = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
  ym z-m )* ( ∑

n = -N

N
  yn z-n )   

        = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
    ∑

n = -N

N
   ym yn zm-n ) 

        = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
    ∑

s = -N-m

N-m
   ym ym+s z-s )  P(ω) FINITE  (35.7) 

 
In the last expression, the sum on s is represented by the blue line in Fig 35.2. In all these expressions, 
one can regard ymym+s and ym yn as being stripped of their Heaviside θ functions as in (35.3). That is to 
say, there are no places in any of the above expressions where ymym+s = 0 because it is out of range. Later 
when we add stationarity, we will replace ym ym+s by f(s) which is never 0 in an out-of-range sense.  
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(d) The mean Spectral Power Density for an Ensemble of pulse trains 
 
We now apply our ensemble average <....> to the previous equation groups to get for the infinite case, 
 

    <P(ω)> = Ppulse(ω) ∑
s = -∞

∞
  <<ymym+s>1> z-s = Ppulse(ω) ∑

s = -∞

∞
   <rs> z-s 

        = Ppulse(ω) <R"(z)>  = Ppulse(ω) 
T1

T  < | Y"(z) |2>   <rs> = 
T1

T  ∑
m= -∞

∞
   <ymym+s> 

        = Ppulse(ω)  
T1

T   < ( ∑
m = -∞

∞
  ym z-m )* ( ∑

n = -∞

∞
  yn z-n ) >  

        = Ppulse(ω)  
T1

T   ( ∑
m = -∞

∞
    ∑

n = -∞

∞
   <ym yn> zm-n )   

        = Ppulse(ω)  
T1

T   ( ∑
m = -∞

∞
    ∑

s = -∞

∞
   <ym ym+s> z-s )  <P(ω)> INFINITE (35.8) 

 
and for an ensemble of finite pulse trains,  
 

    <P(ω)> = Ppulse(ω) ∑
s = -2N

2N
  <<ymym+s>1>z-s = Ppulse(ω) ∑

s = -2N

2N
   <rs> z-s 

        = Ppulse(ω) <R"(z) > = Ppulse(ω) 
1

2N+1  <| Y"(z) |2>,     <rs> = 
1

2N+1 ∑
m = max(-N,-N-s)

min(N,N-s)
     <ymym+s> 

        = Ppulse(ω)  
1

2N+1  < ( ∑
m = -N

N
  ym z-m )* ( ∑

n = -N

N
  yn z-n ) >  

        = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
    ∑

n = -N

N
   <ym yn>  zm-n ) 

        = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
    ∑

s = -N-m

N-m
   <ym ym+s> z-s )  <P(ω)> FINITE (35.9) 

 
(e) Adding Stationarity to the Ensemble Situation 
 
The stationarity assumption is that the Apparatus generating the pulse trains of the ensemble is a 
"stationary stochastic process" which means (at least) that 
 
 <ym> does not depend on m   // where <ym> does not vanish 
 <ymym+s> does not depend on m  // where <ymym+s> does not vanish  (35.10) 
 
Recall that for a finite pulse train, <ym> vanishes outside the range (-N,N) while <ymym+s> vanishes 
outside the gray region in Fig 35.2. For an infinite pulse train these objects don't vanish anywhere.  
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From Appendix G we know that 
 
      cov(X,Y)  = E(XY) - μxμy        (G.24b)  
 => cov (Ym ,Ym+s) = <ymym+s> - <ym><ym+s> = <ymym+s> - <ym>2  // stationarity of <ym> 
  
Assuming <ym> and <ymym+s> are stationary is the same as assuming  <ym> and cov (Ym ,Ym+s) are 
stationary. If we make no stationarity requirement on other statistical measures (like <ym3>), this limited 
sense of stationarity is usually called wide-sense stationarity (WSS). 
 
This stationarity assumption applies to both finite and infinite pulse trains. It is an assumption about the 
process which generates pulse trains regardless of their length.  
 
It is helpful to define μ ≡ <ym> and f(s) ≡ <ymym+s> and rewrite the stationarity assumption in this manner 
for a finite pulse train, where the second equation invokes Fig 35.2's gray region,  
 

 <ym>  = 
⎩
⎨
⎧   μ      for -N ≤ m ≤ N 
 0      for  m < -N or m > N  

 

 <ymym+s>  = 
⎩
⎨
⎧   f(s)    for -N-m ≤ s ≤ N- m 
 0        for  s < -N-m or s > N-m  // m in (-N,N)    (35.11) 

 
For an infinite pulse train, the upper lines apply and then <ym> = μ  and <ymym+s>  = f(s) everywhere.  
 
With this stationarity assumption, we can write 
 

 <rs> =  
T1

T  ∑
m = -∞

∞
   <ymym+s>   = 

T1

T  f(s) ∑
m = -∞

∞
  [1]  = f(s)   // infinite pulse train 

 

 <rs> =  
1

2N+1 ∑
m = max(-N,-N-s)

min(N,N-s)
   <ymym+s>   = 

1
2N+1 f(s) ∑

m = max(-N,-N-s)

min(N,N-s)
   [1]  =  

  = 
1

2N+1 f(s) (2N+1 - |s|)  // see red lines in Fig 35.2 

 

  = 
2N+1 - |s|

2N+1  f(s)       // finite pulse train 

 
To summarize :  
 
 <rs> =  f(s)    // infinite pulse train 

 <rs> = 
2N+1 - |s|

2N+1  f(s) // finite pulse train      (35.12) 
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Here then are the infinite pulse train expressions assuming stationarity :  
 

    <P(ω)> = Ppulse(ω) ∑
s = -∞

∞
  <<ymym+s>1> z-s = Ppulse(ω) ∑

s = -∞

∞
   <rs> z-s 

        = Ppulse(ω) <R"(z)>  = Ppulse(ω) 
T1

T  < | Y"(z) |2>   <rs> = f(s) 

        = Ppulse(ω)  
T1

T   < ( ∑
m = -∞

∞
  ym z-m )* ( ∑

n = -∞

∞
  yn z-n ) >  

        = Ppulse(ω)  
T1

T   ( ∑
m = -∞

∞
    ∑

n = -∞

∞
   <ym yn> zm-n ) 

        = Ppulse(ω)  ∑
s = -∞

∞
   f(s) z-s    <P(ω)> INFINITE (stat) (35.13) 

 
In the last line we used 
 

 
T1

T   ( ∑
m = -∞

∞
    ∑

s = -∞

∞
   <ym ym+s> z-s )  = 

T1

T   (  ∑
s = -∞

∞
   f(s) z-s ) ∑

m = -∞

∞
  [1] = ∑

s = -∞

∞
   f(s) z-s 

 
and then the last line just replicates the first line given that <rs> = f(s).  
 And here are the finite pulse train <P(ω)> expressions assuming stationarity : 
 

    <P(ω)> = Ppulse(ω) ∑
s = -2N

2N
  <<ymym+s>1>z-s = Ppulse(ω) ∑

s = -2N

2N
   <rs> z-s 

        = Ppulse(ω) <R"(z) > = Ppulse(ω) 
1

2N+1  <| Y"(z) |2>      <rs> = 
2N+1 - |s|

2N+1  f(s) 

        = Ppulse(ω)  
1

2N+1  < ( ∑
m = -N

N
  ym z-m )* ( ∑

n = -N

N
  yn z-n ) >  

        = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
    ∑

n = -N

N
   <ym yn>  zm-n ) 

        = Ppulse(ω)  ∑
s = -2N

2N
   f(s)  

2N+1 - |s|
2N+1   z-s  <P(ω)> FINITE (stat)  (35.14) 

 
In the last line we did this manipulation on the last line of (35.9) (see the gray region in Fig 35.2)  
 

 
1

2N+1 ∑
m = -N

N
    ∑

s = -N-m

N-m
   <ym ym+s> z-s   =   

1
2N+1 ∑

s = -2N

2N
    ∑

m = max(-N,-N-s)

min(N,N-s)
          f(s) z-s 

 

  = 
1

2N+1  ∑
s = -2N

2N
  f(s)  z-s ∑

m = max(-N,-N-s)

min(N,N-s)
    [1]   =  

1
2N+1  ∑

s = -2N

2N
   f(s) z-s  ( 2N+1 - |s| ) 
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One again, we see that the final expression in (35.14) replicates the first one with  <rs> as shown.  
 
(f) Adding Independence along with Stationarity to the Ensemble Situation 
 
As shown in Appendix G, if Yn and Ym are independent random variables, then for s ≠ 0,  
 
 f(s) = <ym ym+s> = E(YnYm+s)  = E(Yn)E(Ym+s)  = <ym><ym+s> = <ym><ym>  =  <ym>2  // stationarity 
or 
 f(s) = μ2   μ =  <ym> 
 
But for s = 0, the result is different. We write 
 
 f(0) = <ymym> = <ym2>  = σ2 + μ2  where σ2 ≡ <ym2>- <ym>2 = <ym2>- μ2    (G.30)  
 
To summarize:  
 

 f(s)  = 
⎩
⎨
⎧   μ2            s ≠ 0 
 σ2 + μ2    s = 0 .  // stationarity and independence assumed  (35.15) 

 
For the last time (!), we consider the various <P(ω)> expressions now with stationarity and independence 
assumed. Rather than write all the expressions, we focus just on the first equation (same as the last) of the 
group (35.13) for the infinite case,  
 

 <P(ω)>  = Ppulse(ω) ∑
s = -∞

∞
   <rs> z-s  = Ppulse(ω) ∑

s = -∞

∞
   f(s) z-s  

         = Ppulse(ω) [ f(0) + ∑
s ≠ 0

   f(s) z-s ]  

         = Ppulse(ω) [(σ2 + μ2) +  μ2 ∑
s ≠ 0

   z-s ] 

        = Ppulse(ω) [σ2 +  μ2 ∑
s = -∞

∞
   z-s ]  // now use (13.2) with z = eiωT1 to get : 

              = Ppulse(ω) [σ2 +  μ2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm) ] .     <P(ω)> INFINITE (stat+indep) (35.16) 

 
We shall return to this classic result below. Meanwhile, we have from the first equation (same as the last) 
of the group (35.14) for the finite case, 
 

 <P(ω)>  = Ppulse(ω) ∑
s = -2N

2N
   f(s) z-s  

2N+1 - |s|
2N+1     

  = Ppulse(ω)[ f(0)  +  ∑
s ≠ 0

   f(s) z-s  
2N+1 - |s|

2N+1    ] 
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  = Ppulse(ω)[ (σ2 + μ2)  +  μ2 ∑
s ≠ 0

    
2N+1 - |s|

2N+1   z-s ] 

  = Ppulse(ω)[ σ2   +  μ2 ∑
s = -2N

2N
    

2N+1 - |s|
2N+1   z-s]   // see App. D and comments below 

 

  = Ppulse(ω)[ σ2   +  μ2 
1

2N+1  
sin2[(N+1/2)ωT1]

 sin2(ωT1/2)   ]  // now use (A.20) to get:  

  
  = Ppulse(ω)[ σ2   +  μ2 2π δ6(ωT1,N) ]  .  <P(ω)> FINITE (stat+indep) (35.17) 
 
The evaluation of the Σs in the third last line is non-trivial and is carried out in Appendix D. The last line 
expresses the second last line in the language of Appendix A where δ6 is the delta function model shown 
in (A.20).  From (A.21) we know that 
 

  limN→∞ δ6(k,N)   =  ∑
m = -∞

∞
  δ(k-2πm)        (A.21) 

 
so the last line of (35.17) becomes in the limit N→∞,  
 

 <P(ω)> = Ppulse(ω)[ σ2   +  μ2 2π ∑
m = -∞

∞
  δ(k-2πm) ] 

 
which (as expected) agrees with the last line of (35.16) for the infinite case. 
 
Evaluation of the Σs in (3.17) is not really necessary since we can compute <P(ω)> using a different 
equation from the group (35.13), namely 
 

 <P(ω)>   = Ppulse(ω)  
1

2N+1  ( ∑
m = -N

N
    ∑

n = -N

N
   <ym yn> zm-n ) .      (35.18) 

 
Sometimes double sums (or double integrals) are easier to evaluate than a single-sum representation of 
the same function. The double sum in (35.18) may be evaluated as follows, using (35.15),  
 

 ∑
n = -N

N
    ∑

m = -N

N
   <ym yn> zn-m  =  ∑

n = -N

N
   [  ∑

m = n

 
  f(0) zn-m  + ∑

m ≠ n

 
   f(n-m) zn-m  ] 

 =  ∑
n = -N

N
   [(σ2 + μ2)  + μ2 ∑

m ≠ n

 
   zn-m  + ]  // in first term   ∑

m = n

 
   zn-m  = 1 

 =  ∑
n = -N

N
   [ σ2  +  μ2 ∑

m = -N

N
   zn-m  + ] 

 = (2N+1) σ2 + μ2  ( ∑
n = -N

N
  zn)( ∑

m = -N

N
  zm)* 
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 = (2N+1) σ2 + μ2   [ 2π δ5(ωT1,N) ]2  // from (13.3) used twice with k = ωT1 

 
 = (2N+1) σ2 + μ2  [ (2N+1) 2π δ6(ωT1,N)  ]   // from (A.20)    (35.19) 
 
and therefore 
 

 <P(ω)>   = Ppulse(ω)  
1

2N+1  {  (2N+1) σ2 + μ2 [ (2N+1) 2π δ6(ωT1,N) ] } 

 
  = Ppulse(ω)[ σ2   +  μ2 2π δ6(ωT1,N)] 
 
which agrees with the last line of (35.17),  and we bypassed doing the Appendix D sum.  
 
(g) Comparison between the two kinds of averages <..> and <...>1  
 
We now want to compare the two averages appearing in the above equations :  
 

 <ym>1 cannot depend on m from its definition as a horizontal average over a sequence.  
 <ym> might depend on m, but does not with the stationarity assumption 
 

 <ymym+s>1 = rs cannot depend on m from its definition (32.17), but generally depends on s  
 <ymym+s> may depend on m as well as s, but with stationarity depends only on s 
 
 <ymym+s>1  is not associated with any random variables 
 <ymym+s>  is associated with random variables Ym and Ym+s as outlined in section (a) above 
 
 If Ym and Ym+s are independent random variables, then <ymym+s>  =  <ym>< ym+s> (see App G).  
 In contrast, the statement <ymym+s>1  =  <ym>1< ym+s>1  = <ym>1< ym>1  = < ym>12 might be  true, 
 but has no connection to any random variables upon whose independence this factoring could be 
 postulated.             
             (35.20) 
 
In order to make a connection between these two kinds of averages, we have to make some assumptions.  
 
For an ensemble of pulse trains of very long length (large N), we assume that each ensemble member is a 
"statistical pulse train" in that it very closely has the statistics of the ensemble as a whole. This does not 
mean that the ensemble pulse trains are the same.  
 One implication of this assumption is that all member pulse trains (i = 1,2.. I) then have the same 
autocorrelation function and we may then write 
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 rs(i)  =  <ymym+s>1(i)  =   (1/N) Σm=1N ym(i) ym+s(i)    = the same for all i = 1 to I.  
 
      ≡  rs  ≡   <ymym+s>1   .         (35.21) 
 
Consider then,  
 
 Σm=1N  <ymym+s>   =  N  <ymym+s> .   // stationarity 
 
On the left side of this equation we insert the definition of <ymym+s>, 
 
 <ymym+s>  = (1/I) Σi=1I ym(i) ym+s(i) ,       (35.22) 
 
with this result 
 
 Σm=1N (1/I) Σi=1I ym(i) ym+s(i)  = N  <ymym+s>  . 
 
Now reorder the sums to get, 
 
 (N/I) Σi=1I [(1/N) Σm=1N ym(i)ym+s(i)]  = N  <ymym+s> 
 
 (N/I) Σi=1I <ymym+s>1(i)  = N  <ymym+s> 
 
 (1/I) Σi=1I <ymym+s>1  =  <ymym+s>  // use (35.21) and cancel the N's 
 
 <ymym+s>1 [ (1/I) Σi=1I 1 ]   =  <ymym+s>  
 
 <ymym+s>1  =  <ymym+s> .  // horizontal average equals vertical average 
 
As a special case, we can set s = 0 to get 
 
 <ym2>1  =  < ym2> .  
  
In similar fashion, our very large N assumption implies that all pulse trains in the ensemble have the same 
horizontal mean, so  
 
 <ym>1(i)  ≡  <ym>1  .         (35.23) 
 
Repeating the above steps now for <ym >,  
  
 Σm=1N  <ym >   =  N  <ym>    // stationarity 
 
 Σm=1N [ (1/I) Σi=1I ym(i)]    =  N  <ym>  
 
 (N/I) Σi=1I (1/N) Σm=1N [ym(i)]    =  N  <ym>  
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 (N/I) Σi=1I <ym>1(i)    =  N  <ym>    
 
 (1/I) Σi=1I <ym>1    =  <ym>    // use (35.23) and cancel the N's 
 
 <ym>1   =  <ym> .  
 
Thus, assuming stationarity and very large N, we have found that 
 
 <ymym+s>1  =  <ymym+s> 
 <ymym>1    =  <ymym> 
 <ym>1         =  <ym>  .  // all three lines only for very large N   (35.24) 
 
These relations are equalities for N = ∞, are approximately valid for large N, and are invalid for small N.  
 
If we add to our assumptions so far that Ym and Ym+s are independent, not only may we write 
 
 E(YmYm+s)  = E(Ym)E(Ym+s) ⇔  <ymym+s>  = <ym>< ym+s> // independent, s≠ 0 
 
but we may also write, using stationarity and independence 
 
 <ymym+s>  = <ym>< ym>   = <ym>2    s ≠ 0      
 
which by (35.24) then justifies the claim sometimes made that, 
 
 <ymym+s>1  = <ym>1< ym>1   = <ym>12     s≠0         //stationary + independent + N→∞  (35.25) 
 
(h) Miscellaneous topics 
 
The Two Methods for computing P(ω) 
 
From (35.6) and (35.8) we have obtained these two general "formulas" for the spectral power density of a 
an infinite pulse train, prior to assuming stationarity or independence. We first write these as  
 

 P(ω)   =  Ppulse(ω) ( ∑
s = -∞

∞
  rs z-s )    first line of (35.6)  "autocorrelation" 

 

 P(ω)  = Ppulse(ω)  
T1

T  ( ∑
m = -∞

∞
  ym z-m )* ( ∑

n = -∞

∞
  yn z-n )       (35.26) 

        = Ppulse(ω) 
T1

T   ( ∑
m = -∞

∞
    ∑

n = -∞

∞
   ym yn zm-n )  third line of (35.6)  "double sum" 

 
The corresponding equations for finite pulse trains are,  
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 P(ω)   =  Ppulse(ω) ( ∑
s = -2N

2N
  rs z-s )    first line of (35.7)  "autocorrelation" 

 

 P(ω)  = Ppulse(ω)  
T1

T  ( ∑
m = -N

N
  ym z-m )* ( ∑

n = -N

N
  yn z-n )       (35.26)' 

        = Ppulse(ω) 
T1

T   ( ∑
m = -N

N
    ∑

n = -N

N
   ym yn zm-n )  third line of (35.7)  "double sum" 

 
In either case we have two distinct methods for the computation of P(ω). We might call these the 
autocorrelation method which uses rs, and the double-sum method which directly uses the yn data 
without the intermediary of rs. We saw earlier that the double-sum method provided an easier pathway 
for the finite pulse train case, leading to the last line of (35.17) using the steps shown in (35.19), but in 
general the autocorrelation method is the one most commonly used.  
  
The autocorrelation method will be used in Section 37 for the AMI line code, in Section 38 for the 
Change/Hold Line code, and in Appendix F for infinite pulse trains with repeated subsequences such as 
the Maximum Length Sequence output by a shift register generator.  
 
The equivalence of P(ω) and <P(ω)> for infinite pulse trains  
 
We now rewrite (35.26), this time using an ensemble average on the lower equation,  
 

    P(ω)   =  Ppulse(ω) ( ∑
s = -∞

∞
  <ymym+s>1 z-s )  one pulse train   (35.6) 

 <P(ω)>  = Ppulse(ω)  
T1

T   ( ∑
s = -∞

∞
    ∑

m = -∞

∞
    <ym ym+s> z-s ) ensemble of pulse trains  (35.8) 

         
When stationarity is assumed for the process creating the pulse trains, in the second line above we may 
slide <ym ym+s> z-s to the left through the Σm sum, which sum becomes Σm[1] = T/T1 and we then have 
this pair of formulas 
 

    P(ω)  =  Ppulse(ω) ∑
s = -∞

∞
  <ymym+s>1 z-s = Ppulse(ω) ( ∑

s = -∞

∞
  rs z-s) one pulse train (35.7) 

 <P(ω)>  = Ppulse(ω) ∑
s = -∞

∞
   <ym ym+s> z-s  .   ensemble of pulse trains (35.8) 

             (35.27) 
 
Our point is merely that, according to (35.24) which states <ymym+s>1 =  <ymym+s>, the two right hand 
side expressions are the same for infinite pulse trains, and there is no distinction between <P(ω)> for the 
ensemble and P(ω) for any member of the ensemble. There is also no distinction between rs and <rs> 
since every pulse train in the ensemble has the same autocorrelation function as in (35.21).  
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Facts about Infinite Uncorrelated Statistical Pulse Trains 
 
Here we use the word "uncorrelated" as a sort of euphemism for what is really a stationary and 
independent statistical pulse train as described above. It is true that independent does imply uncorrelated 
as shown in Appendix G (c). Since the converse is not true, our term is somewhat inaccurate.  
 
In the special case of stationarity and independence, we found that from (35.12),  
 

 rs = <rs>  = f(s)   = 
⎩
⎨
⎧   μ2            s ≠ 0 
 σ2 + μ2    s = 0  <ym> = μ,   <ym2>  = σ2 + μ2   (35.12) 

where 

 rs = limN→∞ [
1

(2N+1) ∑
n = -N

N
   yn yn+s ]  .       (32.16)  

 
A plot of rs is usually presented in this traditional manner,  
 

     Fig 35.3 
 
and the corresponding ensemble average power spectrum was shown in the last line of (35.16) 
 

 <P(ω)>  = Ppulse(ω) [ σ2 +  μ2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm) ] .    (35.16) 

 
The spectrum has a continuous piece σ2 Ppulse(ω) proportional to the variance σ2 of the yn over the 
ensemble, and a discrete set of lines proportional to the square of the mean μ = <ym> of the ensemble. 
According to the comments above and (35.24), we can think of <P(ω)> = P(ω) of any member of the 
ensemble,  μ = <ym> = <ym>1 as the mean for that member, and similarly σ2 = <ym2> - μ2 = σ2 = <ym2>1 - 
μ2 as the variance for that member of the ensemble. With this reinterpretation of μ2 and σ2 as properties 
of a single pulse train, we then have for any member of the ensemble,  
 

 P(ω)  = Ppulse(ω) [ σ2 +  μ2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm) ]   .     (35.28) 
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Since 

 2πδ(ωT1 - 2πm)  = (2π/T1) δ (ω - 2πm/T1)  = ω1 δ(ω - mω1)   =  δ( 
ω
ω1 - m)   (35.29) 

 
we can write these alternate forms for (35.28) :  
 

 P(ω)  =  Ppulse(ω) [σ2 + ω1 μ2 ∑
m = -∞

∞
   δ(ω - mω1) ]      (35.28a) 

 P(ω) =  σ2 Ppulse(ω)   +  ω1 μ2 ∑
m = -∞

∞
   Ppulse(mω1)δ(ω - mω1)    (35.28b) 

 P(ω)  =  Ppulse(ω) [σ2 + μ2 ∑
m = -∞

∞
   δ( 

ω
ω1 - m) ]      (35.28c) 

 P(ω) =  σ2 Ppulse(ω)   +  μ2 ∑
m = -∞

∞
   Ppulse(mω1) δ( 

ω
ω1 - m)     (35.28d) 

 
Verification of (35.28)  // "trust but verify" 
 
To find external verification for (35.28), we write the expression in terms of f where ω = 2πf,  
 

 Ppulse(ω) =  
|Xpulse(ω)|2

2πT1
  =   

|Xpulse(f)|2

2πT1
   // (34.4) and text after (1.4) 

 
 P(f)  = 2πP(ω)     // (34.4) last item   
 
 2π δ(ωT1-2πm) = 2π δ(2πfT1-2πm)  = (1/T1) δ( f - m/T1)  . 
 
Then (35.28) becomes 
 

 
1

2π P(f)  = 
|Xpulse(f)|2

2πT1
 (  σ2 +  

μ2

T1
 ∑
m = -∞

∞
   δ( f - m/T1)  ) 

or 

 P(f)  = 
|Xpulse(f)|2

T1
  ( σ2 +  

μ2

T1
 ∑
m = -∞

∞
   δ( f - m/T1)  ) .          (35.28e) 

 
This may be compared to result (A.17) in Appendix A of Xiong which we quote,  
 

     QED 
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Specialization for symbols in the set {A,B}  
 
As a simple example, suppose the set of symbols that our yi can take is just {A,B}. Then the pmf 
distribution associated with random variable Yn (see Appendix G) is quite simple :  
 
 pYn(x) = p  if x = A 
 pYn(x) = 1-p if x = B  .        (35.30) 
 
We can then compute 
 
 μ =  <ym>  = [p]A + [1-p]B .         (35.31) 
 
For n ≠ m we then have 
 
 <ymyn>  = <ym>2 = μ2 =  { pA + (1-p)B }2  
 
  = [pp] AA + [p(1-p)] AB + [(1-p)p]BA + [(1-p)(1-p)]BB     (35.32) 
 
and for n = m,  
 
 <ym2> = [p]AA + [(1-p)] BB .         (35.33) 
 
In the square brackets [..] we indicate the probability of some case occurring, and this is multiplied by the 
value that the quantity in question takes in that case. Notice how the long expression for <ymyn> makes 
complete sense if one enumerates all possibilities. The variance may be computed as 
 
 σ2 = <yn2> - μ2 = [p]AA + [(1-p)] BB -  { pA + (1-p)B }2    
 
  = [p(1-p)] (A-B)2         (35.34) 
 
where Maple helps out,  
 

 . 
 
With the reinterpretations of μ2 and σ2 noted above (now applying to a single pulse train), we then have 
for our infinite statistical pulse train with independent amplitudes in the set {A,B} 
 

 P(ω)  = Ppulse(ω) [σ2 + μ2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)]      (35.28) 

    = Ppulse(ω) [  p(1-p)(A-B)2 + (pA + (1-p)B)2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)] .  (35.35) 
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For the interesting case that p = 1/2 this becomes 
 

 P(ω) = Ppulse(ω) [  
1
4  (A-B)2 + 

1
4  (A+B)2 ∑

m = -∞

∞
  2πδ(ωT1 - 2πm)]    (35.36) 

 
For the classic unipolar case A = 1 and B = 0, both coefficients are 1/4. For bipolar with A = 1 and B = -1 
the coefficients are 1 and 0. Since the mean is then μ= 0, the discrete spectrum goes away. Since for both 
amplitudes |ym | = 1, we are not surprised to find σ2 = 1.  
 
(i) Statistical Uncorrelated Pulse Trains:  Summary and Example 
 
Here then is a brief summary of the above results:  
 
 
 Spectral Power Density of an Uncorrelated Statistical Pulse Train   (35.37) 
 

 x(t) =  ∑
n = -∞

∞
   yn xpulse(t - nT1)     // or  ∑

n = -N

N
   for a finite pulse train 

 P(ω)  = Ppulse(ω) [ σ2 + μ2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)]      // infinite (35.28) 

 P(ω)  = Ppulse(ω) [ σ2 + μ2  2π δ6(ωT1,N)  ]  // finite  (35.17) 
 
  If symbols are restricted to {A,B} then :  

 σ2 =   p(1-p) (A-B)2  and for p = 1/2  σ2 =  
1
4  (A-B)2  (35.34) 

 μ  = pA + (1-p)B  and for p = 1/2  μ2 = 
1
4  (A+B)2  (35.31) 

 
 
Example: Suppose A = 1 and B = 0 so that σ2 = p(1-p) and μ2 = p2.  If we go on to assume p = 1, then 
every pulse has amplitude 1 and we have a simple pulse train.  In this case σ2 = 0 and μ2 = 1 so  

 P(ω)   ≡ Ppulse(ω) ∑
m = -∞

∞
   2πδ(ωT1 - 2πm)    joules 

which agrees with our infinite simple pulse train result (33.25). As we reduce p below p = 1, the line 
spectra are scaled down by μ2 = p2 < 1, and a continuous spectrum starts to appear with σ2 = p(1-p). The 
randomness (variance σ2) of the amplitude magnitudes creates a continuous component in the spectral 
power density. As p reaches p = 1/2, we get σ2 = 1/4 and μ2 = 1/4 to give this classic result 

 P(ω)  = Ppulse(ω) [(1/4)   +  (1/4) ∑
m = -∞

∞
  2π δ(ωT1- 2πm) ]  p = 1/2   (35.38) 

Finally, when p reaches p = 0, then every pulse has B = 0, x(t) ≡ 0, σ2 = 0, μ2 = 0, and so P(ω)  = 0. 
There is nothing left.  
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(j) A numerical example of a Statistical Pulse Train 
 
Recall from box (34.4) that for a finite pulse train,  
 

 P(ω) =  
|X(ω)|2

2πT   =  
|X(ω)|2

2π(2N+1)T1
   Ppulse(ω)  = 

|Xpulse(ω)|2

2πT1
 .   (35.39) 

 
Therefore we can write the last line of (35.17) as, 
 

 
 <|X(ω)|2>

 (2N+1)        = |Xpulse(ω)|2 [(1/4)  +  (1/4) 2π δ6(ωT1,N) ]   .    (35.40) 

 
We shall use for xpulse(t) a square pulse of height A=1 and width τ = T1 = 1 so that, from (9.2), 
 
 | Xpulse (ω) | =  sinc(ω/2)  .         (35.41) 
 
Since our pulse train will be fairly short (N = 20 pulses) and since we shall only average a small number 
of pulse trains (M = 10), we know our result will not exactly match (35.40). Still, we hope to see in our 
result some kind of continuous background spectrum which approximates the curve  (1/4)|Xpulse(ω)|2  = 
(1/4) sinc2(ω/2), and we expect to see delta-function-like peaks which, since 2πδ6(0,N) = (2N+1), have a 
peak value of about  (1/4)41 =  10.25. Since this will be added to the continuous background, the central 
peak should have a height of  10.25 + .25 = 10.5. However, for our small ensemble, we won't have 
exactly p = 1/2, so the delta peak won't be exactly 10.5 units high.  
 
We know that δ6 has identical peaks spaced by 2π, but we expect the non-central peaks to be suppressed 
by the sinc2(ω/2) zeros which occur at ω = m(2π).  
 
Here is a self-documented Maple program which generates <|X(ω)|2>. The program also generates the 
quantity <X(ω)> upon which we shall comment in section (k) below.  
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At this point, before Xpulse(ω) is added to the result, we plot <|X(ω)|2>. As expected, we see the peaks of 
δ6 spaced by 2π and having height around 10 units,  
 

 
 

 
             Fig 35.4 
We now insert copies of Xpulse(ω) as appropriate,  
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and then we can plot 
 <|X(ω)|2>

 (2N+1)  for ω in the same range (-10,10) 

 

 

 
             Fig 35.5 
 
We see that the zeros of the sinc function have killed off the adjacent peaks.  
  
Next, we restrict the plot height to be 0.8 units to view the detail, chopping off the central δ6 peak,  
 

 

 
             Fig 35.6 
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The spectrum 
 <|X(ω)|2>

 (2N+1)   is seen to have a continuous component which very well approximates one 

quarter of the sinc2 curve, as we hoped it would. This tracking also occurs away from the central peak. 
Here is a blow-up of the above plot for ω in the range (5, 30) 
 

 

  
             Fig 35.7 
 
It might be noted that Maple does this work analytically, so that Xas-av is a function of ω having a large 
number of trigonometric terms. For the reader's interest, we show Xas-av(ω) for a typical run:  
 

 
      many terms omitted 

 
 
In more serious work with larger numbers, one would of course do this in a more numeric fashion, but we 
are able to confirm the basic results even with this small experiment.  
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(k) A paradox and its resolution  
 
Now while here, we can back up and apply our statistical average directly to the spectrum in (34.6) using 
(34.7). The result is 
         

 <X(ω)> = Xpulse(ω) ∑
n = -∞

∞
  <yn> e-inωT1 .   (34.6,7)   (35.42) 

 
From (35.31) we have 
 
 <yn> = [p] A + [1-p] B         = p if A=1, B=0 .     (35.43)  
 
In this case, we can extract p from the above sum, which then collapses to form the usual (13.2) delta 
function sum. The result is then the same as the regular pulse train result (14.4) with an overall factor of p 
out front, namely,  
 

 <X(ω)>    =  p ∑
m = -∞

∞
  Xpulse(mω1)  2π δ( ωT1 - 2πm)  .     (35.44) 

 
This says that our average spectrum is 100% discrete, there is no continuous part!  If p = 1/2, the average 
spectrum is just 1/2 times our discrete unit amplitude pulse train spectrum (14.4). How can this be true, if 
we just showed in (35.28) that the average spectral density <|X(ω)|2> has a continuous spectral 
component?  
 
The answer lies in the fact that <ab> ≠ <a><b>, where < > is our averaging operation. Thus 
 
 <|X(ω)|2>  ≠  <X(ω)><X(ω)*>  .        (35.45) 
 
In particular we have from the second last line of (35.9) and (35.42),   
 

 ∑
m = -N

N
    ∑

n = -N

N
   <ym yn> zm-n   ≠   ( ∑

n = -N

N
  <yn> z-n ) ( ∑

m = -N

N
  <ym> zm  ) .    (35.46) 

 
These double sums would be equal if <ym yn> = <yn><ym> for all m and n, but this is not true when n = 
m. The left sum in that case sees  <ym2>  = σ2+μ2 while the right side sees <ym>2 = μ2.  
 
In general we do not expect the average of a product to be the product of the averages,  
 

 ( 
1
N Σi=1N AiBi) ≠ ( 

1
N Σi=1N Ai) ( 

1
N Σi=1N Bi)  . 

 
In the numerical example presented in the previous section we computed <X(ω)> for a small ensemble of 
pulse trains. Here are plots of the real and imaginary part of <X(ω)>,  
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             Fig 35.8 
 
We can see that, apart from the noise of our low statistics, there is only the central peak and no continuous 
spectrum component. A blow-up of the central region follows,  
 

 

 
             Fig 35.9 
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(l) What role has the Autocorrelation Function played in our development?  
 
In Section 32 the autocorrelation function was first introduced as rx(t) for x(t), and was computed for the 
simple case of a box pulse. Treating the definition of rx(t) as a convolution equation, the Wiener-
Khintchine relation Rx(ω) = |X(ω)|2 was trivially derived, where Rx(ω) is the Fourier Integral Transform 
of rx(t). It was then shown that the spectral energy density of a pulse train is E(ω) = (1/2π) Rx(ω) due to 
this relation. It was then shown that rx(0) = E, the total energy in the pulse train. We then commented on 
the origin of the name, showing that the auto-correlation function is the cross-correlation function of a 
function with itself. Finally, we developed the Z Transform version of the Wiener-Khintchine Relation 
R"(z)  = (T1/T) | Y"(z) |2 where R"(z) is the Z Transform of the autocorrelation sequence rs.  
 
Section 33 (simple pulse trains) made no mention of autocorrelation.  
 
In Section 34 (general pulse trains) it was noted again that P = rx(0)/T since P = E/T, and that P(ω) =  
Rx(ω)/ (2πT) since Rx(ω) = |X(ω)|2. At the end of section (b) both E(ω) and P(ω) are stated in terms of 
R"(z) . In particular, (34.14a) says P(ω)  = Ppulse(ω) R"(z) where R"(z) = Σs rsz-s, and this expression 
for P(ω) appears throughout the current Section 35.  
   
Comments:  
 
(1) In the Two Methods discussion above, we showed that the autocorrelation method is only one of two 
approaches one might take to obtain P(ω). Thus, it is always possible to compute P(ω) without ever using 
or even knowing about the autocorrelation sequence rs. For example, in (35.17) the autocorrelation 
method leads to a recalcitrant sum evaluation (Appendix D), whereas the double-sum method leads to an 
easier discovery of P(ω), as shown directly in (35.19).  
 
(2) In some textbooks, one gets the impression that the autocorrelation function is somehow indispensable 
for the development of the P(ω) equations. It is not, but it is convenient for many applications. We will 
use the autocorrelation method several times in the remaining Sections.  
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36. Application to some Standard Non-Correlated Pulse Train Types (Line Codes) 
 
Here we apply our boxed results (35.37) to statistical pulse trains of various types. When a pulse train is 
in fact a voltage on a pair of wires (transmission line, such as a telephone "line"), the way in which 
signals are encoded in the pulse train is called a line code. One could consider a random speed Morse 
code signal going down a wire as a line code, but the term usually refers to a sequence of equally spaced 
amplitude modulated pulses, meaning a pulse train. Often line codes get modulated onto an RF carrier, in 
which case the line code is thought of as the baseband signal prior to modulation. For this reason, line 
codes are often discussed in the "baseband chapter" of any digital communications text.  
 The line code names are a little strange due to their history. Here are the pulse shapes used for RZ and 
NRZ lines codes. In either case a 1 is (is coded as) a pulse and a 0 is no pulse.  
 

          
             Fig 36.1 
                     
On the left, since the signal returns to zero inside the pulse period, it is called a "return to zero" code RZ. 
Since this does not happen on the right, that is a "non return to zero" code, NRZ.  
 
(a) Unipolar NRZ line code  
 
Pulse Shape. The pulse is a box of amplitude V and width τ = T1, 
 

           Fig 36.2  
 
From (9.2) we know that 
 

 Xpulse(ω) = (VT1) sinc(ωT1/2)  =  (VT1) sinc(π 
ω
ω1 ) ω1 = 2π/T1     

              

 Ppulse(ω)  = 
|Xpulse(ω)|2

2πT1
    = (VT1)2 sinc2(π 

ω
ω1 )/(2πT1) =  (V2/ω1) sinc2(π 

ω
ω1 )  (36.1) 

 
Coding:  NRZ is a normal binary signal, high for period T1 to indicate a 1, and low for T1 to indicate a 0. 
Sometimes this is called unipolar NRZ since the signal never goes negative.  
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         Fig 36.3 
 
Coefficients σ2 and μ2 :  From summary box (35.37),  
 
 A = 1 and B = 0 =>   σ2 = p(1-p)   μ2 = p2  μ = p 
 
Spectrum: The average spectral power density for the NRZ line code is :  
 

 P(ω) =  σ2 Ppulse(ω)   +  μ2 ∑
m = -∞

∞
   Ppulse(mω1) δ( 

ω
ω1 - m)     (35.28d) 

 P(ω) =  (V2/ω1) [ p(1-p) sinc2(π 
ω
ω1 )  +  p2 ∑

m = -∞

∞
   sinc2(π 

ω
ω1 ) δ( 

ω
ω1 - m) 

 P(ω) =  (V2/ω1) [ p(1-p) sinc2(π 
ω
ω1 )  +  p2 δ( 

ω
ω1 ) ]   // any p    (36.2) 

 P(ω) =  (V2/ω1) [ 
1
4  sinc2(π 

ω
ω1 )  + 

1
4  δ( 

ω
ω1 ) ]    // for p = 1/2   (36.3) 

 
The sinc function killed off all but the m = 0 line ( the "DC line").  
 
In order to express this (and later) results in the frequency domain, we use these relations 
 
 P(ω) = P(f)/2π  // (34.4) bottom line 
 1/ω1 = T1/2π 

 
ω
ω1  = 

f
f1  ≡ x for plots // f1 = 1/T1       (36.4) 

 
to obtain 
 

 P(f) = V2T1 [ p(1-p) sinc2(π 
f
f1 )  +  p2 δ( 

f
f1 ) ]  // any p    (36.2)' 

 P(f) = V2T1 [  
1
4  sinc2(π 

f
f1 )  +  

1
4  δ( 

f
f1 ) ]   // for p = 1/2   (36.3)'  

 
This last line can be written  
 

 P(f) = V2
 [  

1
4  T1 sinc2(πfT1)  +  

1
4  δ(f) ]   // for p = 1/2   (36.3)" 

 
which then agrees with Xiong (2.25).  
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Plot:  Ignoring the overall factor (V2/ω1) we make this plot of P(ω)  given by (36.2): 

    Fig 36.4 
 
The red curve should be scaled by the red factor shown on the left, and the blue delta line should be 
scaled by the blue factor on the right.  
 
Power Partition:  The total power in the continuous part of the spectrum is:  (  dω = ω1dx )  
 

 AC power =  ∫
-∞

 ∞  ω1dx P(xω1>  =  p(1-p) V2  ∫
-∞

 ∞  dx sinc2(πx)   = p(1-p) V2 . 

 
The total power in the DC line at ω = 0 is 
 

 DC power =  ∫
-∞

 ∞  ω1dx P(xω1)  = V2 ∫
-∞

 ∞  dx p2 δ(x)  = p2V2 

 
Thus we find that 
 
 total power =    p2 V2 + p(1-p) V2    = pV2        
          DC           AC 
If p = 1/2, then  
 
 total power = (1/4) V2  + (1/4) V2    =   (1/2)V2       (36.5) 
        DC           AC   
 
so half the power is in the DC line and half in the AC signal. The DC term is certainly reasonable since 
we know that with p = 1/2, the average voltage is (V/2).   
 If one wanted to reduce wasted power, it would be good to give this signal a DC offset of -V/2 and 
then there would be no DC line. This is in fact the next example if one takes V → V/2.  
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(b) Bipolar NRZ line code  
 
Pulse Shape. The pulse shape is the same as for Unipolar NRZ 
 

        Fig 36.2 
 

 Ppulse(ω)  = (V2/ω1) sinc2(π 
ω
ω1 )    same as for unipolar NRZ    (36.1) 

 
Coding:  1 is coded as a positive box with amplitude V, and a 0 as a negative box having amplitude -V.  
 

       Fig 36.5 
 
Coefficients σ2 and μ2 :  From summary box (35.37),  
 
 A = 1 and B = -1 =>   σ2 = 4p(1-p)   μ2 = (1-2p)2   μ = 2p-1  
 
Spectrum: The average spectral power density for the bipolar NRZ line code is :  
 

 P(ω) =  σ2 Ppulse(ω)   +  μ2 ∑
m = -∞

∞
   Ppulse(mω1) δ( 

ω
ω1 - m)     (35.28d) 

 P(ω)   =  (V2/ω1) [4p(1-p) sinc2(π 
ω
ω1 )  +  (1-2p)2 ∑

m = -∞

∞
   sinc2(π 

ω
ω1 ) δ( 

ω
ω1 - m)  

 P(ω)   =  (V2/ω1) [4p(1-p) sinc2(π 
ω
ω1 )  +  (1-2p)2 δ( 

ω
ω1 ) ]   // any p   (36.6) 

 P(ω)  =  (V2/ω1) [ sinc2(π 
ω
ω1 ) ] {  = Ppulse(ω)  }  // for p = 1/2  (36.7) 

 
which become, using (36.4), 
 

  P(f)   =  (V2T1) [4p(1-p) sinc2(π 
f
f1 )  +  (1-2p)2 δ( 

f
f1 ) ]   // any p   (36.6)' 

 P(f)   =  (V2T1) [ sinc2(π 
f
f1 ) ] {  = Ppulse(f)  }   // for p = 1/2  (36.7)' 
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This last result agrees with Xiong (2.20). The spectrum is all continuous when p = 1/2 since then the DC 
portion is killed off. A discrete spectrum cannot exist if the waveform amplitudes have zero mean, μ = 0.  
 Notice that for p = 1/2, bipolar NRZ has P(ω)   = Ppulse(ω), so the statistical pulse train spectrum is 
the same as that of the underlying pulse.  
 
Plot:  Ignoring the overall factor (V2/ω1) we make this plot of <P(xω1)> given by (36.6) 
 

        Fig 36.6     
 
which is the same as the spectrum for unipolar NRZ except for the two scaling factors.  
 
Power Partition:   We can again compute the DC and AC power.  
 
 AC power = unipolar NRZ with p(1-p) → 4p(1-p),  so AC = 4p(1-p) V2 
 
 DC power = unipolar NRZ with p2 →  (2p-1)2,  so DC = (2p-1)2 V2 
  
 total power = (2p-1)2V2  +  4p(1-p)V2   = V2  , independent of p.     (36.8) 
          DC               AC 
 
The total power is independent of p because a pulse has the same AC power if it goes up or down. For p = 
1/2 we get 
 
 total power =       0     +      V2    =  V2  // p = 1/2     
          DC           AC 
  
and now no power is wasted pushing DC through a line. If we take V→V/2 to have a comparable peak-to-
peak amplitude, we find 
 
 AC power = (V/2)2  
 
which is the same as the AC power in (36.5); it is not affected by a DC offset of -V/2.  
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(c) Unipolar RZ line code 
 
Pulse Shape. Here the basic pulse is a box that fills only half the time interval T1.   
 

        Fig 36.7  
 
According to (12.1) applied to the above pulse.  
 
 x(t)  ↔ X(ω) 
 x(t - T1/2) ↔ X(ω) e-iωT1/2 .        (12.1) 

 
where X(ω) is for a pulse of total width T1/2 centered at t = 0.  The spectrum of this centered pulse is 
given by (9.2) with τ = T1/2 as X(ω) = (VT1/2) sinc(ωT1/4). Thus, the above pulse has this spectrum 
 

 Xpulse(ω) = e-iωT1/2  (VT1/2) sinc(ωT1/4)  = e-iωT1/2  (VT1/2) sinc( 
π
2  

ω
ω1 )  

 
and then 
 

 Ppulse(ω)  = 
|Xpulse(ω)|2

2πT1
  = 

(VT1/2)2

2πT1
  sinc2( 

π
2  

ω
ω1 )  = (V2/4ω1) sinc2( 

π
2  

ω
ω1 ) .  (36.9) 

 
 
Coding: 1 is coded as the presence of the pulse, 0 is coded as the absence of a pulse.  
 

        Fig 36.8 
 
Coefficients σ2 and μ2 :  From summary box (35.37), coefficients are the same as for NRZ,  
 
 A = 1 and B = 0 =>   σ2 = p(1-p)   μ2 = p2  μ = p 
 
Spectrum: The average spectral power density for the unipolar RZ line code is :  
 

 P(ω) =  σ2 Ppulse(ω)   +  μ2 ∑
m = -∞

∞
   Ppulse(mω1) δ( 

ω
ω1 - m)     (35.28d) 



  Chapter 6: Power in Pulse Trains 

  197 

 P(ω) =  (V2/4ω1) [ p(1-p) sinc2( 
π
2  

ω
ω1 )  +  p2 ∑

m = -∞

∞
   sinc2( 

π
2  

ω
ω1 ) δ( 

ω
ω1 - m) 

 P(ω) =  (V2/4ω1) [ p(1-p) sinc2( 
π
2  

ω
ω1 )  +  p2 ∑

m = odd
   sinc2( 

π
2 m) δ( 

ω
ω1 - m)  + p2 δ( 

ω
ω1 ) ]    (36.10) 

 P(ω) =  (V2/4ω1) [ 
1
4  sinc2( 

π
2  

ω
ω1 )  +  

1
4 ∑

m = odd
   sinc2( 

π
2 m) δ( 

ω
ω1 - m)  + 

1
4  δ( 

ω
ω1 ) ]             (36.11) 

 
where the last line is for p = 1/2. Then using (36.4) we write the f domain versions,  
 

 P(f) =  (V2T1/4) [ p(1-p) sinc2( 
π
2  

f
f1 )  +  p2 ∑

m = odd
   sinc2( 

π
2 m) δ( 

f
f1 - m)  + p2 δ( 

f
f1 ) ]        (36.10)'  

 P(f) = (V2T1/4) [ 
1
4  sinc2( 

π
2  

f
f1 )  +  

1
4 ∑

m = odd
   sinc2( 

π
2 m) δ( 

f
f1 - m)  +  

1
4  δ( 

f
f1 ) ]           (36.11)'  

              

In all these expressions one can replace sinc2( 
π
2 m)  by its odd-integer value 

4
π2 

1
m2  since 

 sinc2( 
π
2  m) =  

⎩
⎨
⎧   1    m = 0

 0    m = even ≠ 0

 
4
π2 

1
m2   m = odd

  

 
Result (36.11)' agrees with Xiong (2.31) in which Rb ≡ 1/T = our 1/T1, but he has not separated out the 
three terms m = 0, m = even ≠ 0 and m = odd.  
 
Plot:  Ignoring now the overall factor (V2/4ω1) we get this power spectrum P(ω) from (36.10),  
 
 

        Fig 36.9 
       
We now have three pieces: a continuous part, the DC line, and a set of lines at odd m. The main peak is 
twice as wide as the NRZ peak since the underlying pulse is half as wide.  
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Power Partition:  Once again, we can compute the total power for each of these three pieces.  
 

 odd lines power =  ∫
-∞

 ∞  ω1dx P(xω1)  = ω1 (V/2)2 (1/ω1) p2 ∫
-∞

 ∞  dx sinc2( 
π
2 x) 2 ∑

m = 1 3 5...

∞
   δ(x - m) 

 =  (V/2)2 2p2 ∑
m = 1 3 5...

∞
  sinc2( 

π
2 m)  = (V/2)2 2p2 ∑

m = 1 3 5...

∞
   

sin2( 
π
2 m)

 ( 
π
2 m)2

   = (V/2)2 2p2 (2/π)2 ∑
m = 1 3 5...

∞
      

1
m2  

       = (V/2)2 2p2 (2/π)2 (π2/8) =  p2(V/2)2 
 
where the sum Σodd(1/m2) = π2/8 is from Gradshteyn and Ryzhik 0.234.2. Then  
 

 DC power =  ∫
-∞

 ∞  ω1dx P(xω1)  = (V/2)2p2  ∫
-∞

 ∞  dx sinc2( 
π
2 x) δ(x)  = p2 (V/2)2 

 

which is the same as the odd lines power. Finally,  
 

 continuum power =  ∫
-∞

 ∞  ω1dx P(xω1)  =  (V/2)2 p(1-p)  ∫
-∞

 ∞  dx sinc2( 
π
2 x)   = 2p(1-p) (V/2)2 

 
So the power partitioning is 
 
 total power = p2(V/2)2  + p2 (V/2)2  +  2p(1-p) (V/2)2              
                                DC         other lines         continuum 
 
   = p2(V/2)2  + p(2-p) (V/2)2   = 2p(V/2)2   = (p/2)V2 .    (36.12) 
        DC              AC 
  
This is half of the total power of unipolar NRZ (36.4), which seems reasonable since the pulses here have 
half the duration.  
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(d) Bipolar RZ line code 
 
Pulse Shape. The pulse shape is the same as for Unipolar RZ 
 

        Fig 36.7 
 

 Ppulse(ω)  = (V2/4ω1) sinc2( 
π
2  

ω
ω1 ) .       (36.9) 

 
Coding:  1 is coded as a positive pulse with amplitude V, and a 0 as a negative pulse having amplitude -V.  
 

       Fig 36.10 
 
Coefficients σ2 and μ2 :  From summary box (35.37),  and the same as for bipolar NRZ 
 
 A = 1 and B = -1 =>   σ2 = 4p(1-p)   μ2 = (1-2p)2   μ = 2p-1 
 
Spectrum: The average spectral power density for the bipolar RZ line code is :  
 

P(ω) =  σ2 Ppulse(ω)   +  μ2 ∑
m = -∞

∞
   Ppulse(mω1) δ( 

ω
ω1 - m)     (35.28d) 

P(ω) =  (V2/4ω1) [4p(1-p) sinc2( 
π
2  

ω
ω1 )  +  (1-2p)2 ∑

m = -∞

∞
   sinc2( 

π
2  

ω
ω1 ) δ( 

ω
ω1 - m) 

P(ω) = (V2/4ω1) [4p(1-p) sinc2( 
π
2  

ω
ω1 ) + (1-2p)2 ∑

m = odd
   sinc2( 

π
2  m )δ( 

ω
ω1 - m) + (1-2p)2 δ( 

ω
ω1 )]  (36.13)  

P(ω) =  (V2/4ω1) sinc2( 
π
2  

ω
ω1 )  { = Ppulse(ω) }    // p = 1/2 (36.14) 

 
which become, using (36.4), 
             

P(f) =  (V2T1/4) [4p(1-p) sinc2( 
π
2  

f
f1 )  +  (1-2p)2 ∑

m = odd
   sinc2( 

π
2  m )δ( 

f
f1 - m) + (1-2p)2 δ( 

f
f1 ) ]  (36.13)'       

P(f) =  (V2T1/4) sinc2( 
π
2  

f
f1 )  { = Ppulse(f) }    // p = 1/2 (36.14)' 
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This last result agrees with Xiong (2.30). As noted earlier,  sinc2( 
π
2 m)  = 

4
π2 

1
m2  for odd m.  

 
Plot:  Ignoring now the overall factor (V2/4ω1) we get this power spectrum from (36.13),  
 

        Fig 36.11 
 
Power Partition:  Once again, we can compute the total power for each of three pieces. These are the same 
as for the unipolar RZ if we make the replacements p(1-p) → 4p(1-p) and p2→ (1-2p)2, so 
 
 odd lines power =  (1-2p)2 (V/2)2 
 
 DC power = (1-2p)2 (V/2)2 
 
 continuum power = 8p(1-p) (V/2)2 
 

So the power partitioning is 
 
 total power =  (1-2p)2 (V/2)2  + (1-2p)2 (V/2)2  +   8p(1-p) (V/2)2              
                                DC                       odd lines                 continuum 
 
   = (1-2p)2 (V/2)2  + [1-4p(p-1)] (V/2)2   = 2  (V/2)2  = V2/2   (36.15) 
       DC                         AC 
 
As expected, this is half the total power of bipolar NRZ since the pulses have half the duration. For p = 
1/2 all the power is in the continuum.  
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(e) Manchester line code 
 
This line code was developed at the University of Manchester probably in the World War II era.  At that 
time Tom Kilburn, Alan Turing and others were building the world's first stored-program computer.  
 
Pulse Shape:  The pulse shape here is the biphase (biphasic, diphase) pulse,  
 

        Fig 36.12 
 
We already computed Xpulse(ω)  for this pulse in (19.2), so we now set τ = T1/2 and A/2 = V to get 
 
 Xpulse(ω) =  (4iV/ω) sin2(ωT1/4)  =  (4iV/ω) sin(ωT1/4) [sin(ωT1/4) / (ωT1/4 )] (ωT1/4 )  
 
  = (iVT1) sin(ωT1/4) sinc(ωT1/4) 
 

 Ppulse(ω)  = 
|Xpulse(ω)|2

2πT1
  =  (V2/ω1) sin2( 

π
2  

ω
ω1 ) sinc2( 

π
2  

ω
ω1 )  .    (36.16) 

 

This spectral pulse density is 4 sin2( 
π
2  

ω
ω1 )times that of the RZ pulse shown in (36.9). This extra factor 

kills off the spectrum at ω = 0.     
 
Coding:  1 is coded as the above pulse, 0 is coded as the negative of the pulse (but some sources use the 
opposite polarity),  
 

       Fig 36.13 
 
Coefficients σ2 and μ2 :  From summary box (35.37),  and the same as for bipolar NRZ 
 
 A = 1 and B = -1 =>   σ2 = 4p(1-p)   μ2 = (1-2p)2  μ = 2p-1 
 

Comment: Notice that the mean value of the waveform in Fig 36.13 is 0 regardless of p, whereas the 
mean value μ of the amplitudes yn is given by μ =  2p-1.  



  Chapter 6: Power in Pulse Trains 

  202 

 

Spectrum: The average spectral power density for the Manchester code is :  
 

P(ω) =  σ2 Ppulse(ω)   +  μ2 ∑
m = -∞

∞
   Ppulse(mω1) δ( 

ω
ω1 - m)     (35.28d) 

P(ω) = (V2/ω1) [4p(1-p) sin2( 
π
2  

ω
ω1 ) sinc2( 

π
2  

ω
ω1 ) + (1-2p)2 ∑

m = -∞

∞
   sin2( 

π
2  

ω
ω1 ) sinc2( 

π
2  

ω
ω1 ) δ( 

ω
ω1 - m)] 

P(ω) = (V2/ω1) [4p(1-p) sin2( 
π
2  

ω
ω1 ) sinc2( 

π
2  

ω
ω1 ) + (1-2p)2 ∑

m = odd
   sinc2( 

π
2  m )δ( 

ω
ω1 - m) ]  (36.17)  

P(ω) =  (V2/ω1) sinc2( 
π
2  

ω
ω1 )  { = Ppulse(ω) }    // p = 1/2 (36.18) 

 
which become, using (36.4), 
 

 P(f) =  (V2T1) [4p(1-p) sin2( 
π
2  

f
f1 ) sinc2( 

π
2  

f
f1 ) + (1-2p)2 ∑

m = odd
   sinc2( 

π
2  m ) δ(

f
f1 - m) ]  (36.17)' 

 P(f) =  (V2T1) sin2( 
π
2  

f
f1 ) sinc2( 

π
2  

f
f1 )]      // p = 1/2 (36.18)' 

 

As noted earlier,  sinc2( 
π
2 m)  = 

4
π2 

1
m2  for odd m. The last result agrees with Xiong (2.38). He refers to 

this Manchester code as Bi-Φ-L.  

 
Plot:  Ignoring the leading factor  (V2/ω1) the spectrum for (36.17) has this plot,    

        Fig 36.14 
Power Partition:   

 lines power =  ∫
-∞

 ∞  ω1dx<P(xω1)> = V2 (2p-1)2 ∫
-∞

 ∞  dx sin2( 
π
2 x) sinc2( 

π
2 x) ∑

m = ±odd

 
   δ(x - m) 
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  =  V2 (2p-1)2 ∑
m = ±odd

 
   sin2( 

π
2 m) sinc2( 

π
2 m) =  V2 (2p-1)2 ∑

m = ±odd

 
   sin4( 

π
2 m) ( 

π
2 m)-2 

       = V2 (2p-1)2(2/π)2 ∑
m = ±odd

 
   1 /m2   = V2 (2p-1)2(2/π)2 2 ∑

m = 1 3 5...

∞
   1 /m2 

 
       =   V2 (2p-1)2(2/π)2 2 (π2/8) =  (2p-1)2 V2    
 

 continuum power =  ∫
-∞

 ∞  ω1dx<P(xω1)>  = V2 4p(1-p)  ∫
-∞

 ∞  dx sin2( 
π
2 x) sinc2( 

π
2 x)  =  V2 4p(1-p) 

 
since the integral is just 1. Therefore,  
  
 total power =   0     +      (2p-1)2 V2   +     4p(1-p) V2        = V2    (36.19)  
     DC              lines               continuum            AC 
 
In the case p = 1/2, the lines power vanishes leaving only continuum power = V2.  
 
Since the power is kept away from DC, Manchester coding is useful for AC-coupled transmission lines, 
such as lines incorporating transformers. The down side compared to NRZ is that the first spectral hump 
goes out to ω = 2ω1, which reflects the fact that the minimum pulse width is T1/2 whereas in NRZ it is 
T1. So a transmission line must then have twice the bandwidth for Manchester relative to NRZ.   
 
(f) Noise, ISI and Eye Patterns 
 
In general, if some spectral components are filtered away in a transmission line (or in some general signal 
pathway), the corresponding pulse (by inverse Fourier Transform) has curved corners, meaning the pulse 
gets rounded and spread out. This effect along with noise can result in inter-symbol interference (ISI). 
The superposition of such pulses on an oscilloscope (triggered on a recovered T1 clock) for a random 
pulse train is called an eye pattern. This pattern must have a central clear area to allow the two (or more 
for some line codes) pulse levels to be distinguished by a receiving circuit.  Here is a marginal eye pattern 
for NRZ on the left, and a better one for AMI on the right (see Section 37).  
 

    Fig 36.15 



  Chapter 6: Power in Pulse Trains 

  204 

37. The AMI Line Code 
 
(a) Pulse Shape  
 
The pulse shape is the same as for unipolar NRZ ,  
 

        Fig 36.2 
 
 Xpulse(ω) =  (VT1) sinc(ωT1/2) 
             (36.1)  
 Ppulse(ω)  = (1/2π) V2T1 sinc2(ωT1/2) 
 
However, we shall do the analysis below for a general xpulse(t) and insert the box shape at the end.  
 
(b) Coding 
 
Alternate Mark Inversion (AMI) means that a 0 is encoded as a zero (for duration T1) and a 1 is encoded 
as a pulse (of duration T1) of either plus or minus polarity.  As each 1 is encountered in the data, the pulse 
polarity is the negative of that used for the previous encoded 1 pulse, so the 1 polarities are alternated, as 
in this example 
 

       Fig 37.1 
 
(c) Expectations <ym2> and <ymyn> 
 
A zero is coded with amplitude B = 0, but a one is coded with either A = +1 or A = -1, so we have A = ± 
1, B = 0.  Because there is now correlation between different locations m and n in the pulse train, we can 
no longer use the simple results of box (35.37).  Consider then the expression given in (35.33) for the 
statistical average <yn2>. We assume that p is the probability of a 1 being coded, so 1-p is the probability 
of a 0 being coded. Then we have 
 
 <yn2> =  [p]AA + [(1-p)] BB   = [p]AA  = [p] (±1) (±1) = p     (37.1) 
 
That was the easy one.  
 



  Chapter 6: Power in Pulse Trains 

  205 

For <ynym> with m ≠ n, we have a much harder problem. Consider 
 
 <ymyn> =  [pp] AA' + [p(1-p)] AB' + [(1-p)p]BA' + [(1-p)(1-p)]BB'   
 
      =  [pp] σ σ' + [p(1-p)] σ 0 + [(1-p)p] 0 σ' + [(1-p)(1-p)] 0 0 
 
      = p2 σ σ'          (37.2) 
    
where σ = ±1  and σ' = ±1.  Here p2 is the probability that both slot positions ym and yn are coded for 1. 
This can happen in four different ways, as illustrated here,  
 

        Fig 37.2 
 
By symmetry, the probability of cases 1 and 2 is the same, and the probability of cases 3 and 4 is the 
same. This is perhaps not totally obvious, but the reason will become clear below when we talk about 
legal pulse patterns.  
 
Given that both m and n are coded for 1, let X/2 be the total probability for the case 1, and Y/2 be the total 
for the case 3. Then we can write 
 
 <ymyn> = (+1)(+1) p2X/2 +  (-1)(-1) p2X/2 + (+1)(-1) p2Y/2 +  (-1)(+1) p2Y/2 
 
       = p2(X-Y) .  
 
Given that both m and n are coded for a 1, since we have enumerated all the cases, we must have 
 
 X + Y = 1  // probability of getting any of the four cases.  
 
Our task then is to compute probabilities X and Y.  
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For cases 1 and 2 taken together, X is the probability that the gap between the coded 1's is filled with a 
legal sequence of pulses. This is the key statement and the reader may want to ponder the previous 
sentence thinking about probability as the number of legal ways divided by the total number of ways. 
Only the legal ways can show up in a statistical ensemble.  
 
If the gap is "legal", there must be an odd number of coded 1's in the gap, due to the AMI alternation 
coding rule. Similarly, Y is the probability that there are an even number of coded 1's in the gap. Define,  
  
 k = |m-n| - 1 = size of gap 
 
and think of X and Y as depending on k, so we write Xk and Yk.  
 
Note that Y = Yk = (1-Xk) = probability that gap has even number of coded 1's. So far, we add k labels to 
our results shown above,  
 
 <ymyn> = p2(Xk-Yk)  = p2 (2Xk - 1)    k = |m-n| - 1 .    (37.3) 
 
Assume we have a gap of size k and there exists some Xk and Yk we don't yet know. What can be said 
about X and Y if the gap is increased to size k+1 by adding one more pulse period in between?  Claim:  
 
 Xk+1 = Yk p + Xk (1-p)    =  probability of having an odd number of coded 1's in gap k+1 
 
Explanation:   
 
• Yk is the probability the k gap had an even number of coded 1's. In order to make the k+1 gap have an 
odd number of coded 1's we have to put a coded 1 in the new space, which has probability p.   
This gives the first term Yk p . 
 
• Xk is the probability the k gap had an odd number of coded 1's. In order to make the k+1 gap have an 
odd number of coded 1's we have to put a coded 0 in the new space, which has probability (p-1).   
This gives the second term Xk (1-p) . 
 
Since this exhausts the ways we can get from k to k+1, Xk+1 has the probability shown above. We could 
write a similar expression for Yk+1 but it is not needed. Since Yk = 1-Xk we then have 
 
 Xk+1 = (1-Xk) p + Xk (1-p) = p - pXk + Xk- pXk = (1-2p)Xk + p .   (37.4) 
 
Now define, 
 
  a ≡ (1-2p)  =>  p = (1-a)/2    and   1-p = (1+a)/2 
 
Then the above reads,  
 
 Xk+1 = aXk + p .          (37.5)  
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This is a difference equation (recurrence relation) which we want to solve for Xk.  If there is no gap at all 
(k=0), we have two adjacent identical pulses which is illegal so X0 = 0. If the gap is k = 1, then the 
middle element must be different from the two ends, so X1 = p, consistent with (37.5). We now examine 
the recurrence relations: 
  
 X0 = 0 
 X1 = p 
 X2 = a(p) + p = p(a+1) 
 X3 =  a[p(a+1]+ p = p(a2+a +1) 
 .... 
 Xk = p (ak-1 + ..... + a2 + a + 1) 
 
The geometric series can be summed in the usual manner and yields 
 
 Xk = p (1 - ak)/(1-a) = p (1 - ak)/2p = (1 - ak)/2 .       (37.6) 
 
The same result can be obtained from Maple in this manner :  
 

 
Inserting this result into (37.3) gives 
 
 <ymyn> = p2 (2Xk - 1) = p2 (2[(1 - ak)/2] - 1)  = p2 ( (1 - ak) - 1)  = - p2ak 
 
       = - p2 a[|m-n| - 1]  = (-p2/a) a|m-n|  .      (37.7) 
 
Therefore, we have our final results for our two expectations,  
 
 <ymyn> =  (-p2/a) a|m-n|  m ≠ n  // a ≡ (1-2p)       

 <yn2> = p  .           (37.8) 
 
These results are in agreement with Bennett and Davey equations (19-111) and (19-119), and in fact it is 
their method we have presented above.  
 
(d) The autocorrelation sequence 
 
We assume the AMI code generator is stationary as defined in (35.10). Presumably this will be the case 
unless some non-stationary data stream is fed into the AMI encoder. With this assumption we can use 
(35.24) to relate the ensemble averages in (37.8) of our infinite sequence to the horizontal averages 
<...>1, 
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 rs  =  <ymym+s>1  =  <ymym+s>    s≠ 0 
 r0   = <ym2>1    =  <ym2> 
 
where rs = <ymym+s>1 is the autocorrelation sequence for the ym. Thus we have from (37.8)  
 
 rs =  (-p2/a) a|s|   =  -p2 a|s|-1 =  -p2 (1-2p)|s|-1 s ≠ 0 
 r0 =  p           (37.9) 
 
We now plot the autocorrelation sequence for various p values using this code 
 

 
 
Here are plots of rs for p = 0.0 (red) to p = 0.5 (black) where, as usual, we connect the discrete points of 
the sequence with lines,  

 
             Fig 37.3 
 
For p = 0, the autocorrelation sequence is a flat line (red) because in this case all symbols are 0. As the 
probability p of encoding a 1 increases, the autocorrelation sequence becomes more "active" away from 
the s = 0 central point. At p = 1/10 (blue), nothing much happens beyond |s| = 1. For p = 2/10  (green), we 
see action all the way out to |s| = 3 and even beyond. As p increases, the value of r1 becomes larger and 
more negative, meaning if s = 0 is a coded + pulse, then s = 1 is likely to be a -1 pulse due to the AMI 
prescription. The p = 1/2 curve is magenta.  
 
As p is further increased from p = 1/2, the density of coded 1's in the pulse train increases and the 
correlation distance increases as these 1's affect each other more and more. Here are plots for p = 0.5 
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(magenta) to p = 1.0 (gray). The action is so violent now that we had to increase the vertical range relative 
to the previous set of graphs.  
 

 
             Fig 37.4 
 
The p = 1 plot (gray) has a very simple interpretation:  Now every pulse is coded as a 1, so every pulse 
must alternate in polarity, so as we slip two pulse trains relative to each other to obtain the autocorrelation 
sequence, if we slip an even number of symbols things are 100% correlated, and if we slip an odd 
number, things are then 100% anti-correlated.  
 
(e) Power Spectral Density Calculation using the Autocorrelation Method 
 
As outlined in Section 35, we have two methods to find the power spectrum. Here we shall use the 
"autocorrelation method" where R"(z) is the Z Transform of rs .  
 
 P(ω)  = Ppulse(ω) R"(z)  z = eiωT1      (34.14a)  
 
Our task then is to compute R"(z) from the autocorrelation sequence rs given in (37.9) 
 
 rs =  (-p2/a) a|s|   =  -p2 a|s|-1 =  -p2 (1-2p)|s|-1 s ≠ 0 
 r0 =  p           (37.9) 
 
So:   

 R"(z) = ∑
s = -∞

∞
   rs z-s   =  p - (p2/a) ∑

s ≠ 0

 
   a|s| z-s   |a|<1  a = 1-2p 

  = p - (p2/a)[ ∑
s= 1

∞ 
  as z-s  + ∑

s= 1

∞ 
  as zs ]  

  = p - (p2/a)[ ∑
s= 1

∞ 
  (a/z)s  + ∑

s= 1

∞ 
  (az)s ]     |a/z| < 1  |az| < 1 

  = p - (p2/a)[ ∑
s= 1

∞ 
   {x}s  + ∑

s= 1

∞ 
   {x*} s ]  x = a/z  |x| < 1 |x*|<1 
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  = p - (p2/a)[ 
x

1-x + 
x*

1-x* ]   // the usual geometric series sums 

   = p - (p2/a) 2 Re[
x

1-x ] .          (37.10) 

 
Now setting ωT1 = k we have z = eik  and x = a/z = a e-ik 
 

 
x

1-x  = 
ae-ik

(1- ae-ik) 
 (1- aeik) 

(1- aeik)   =  
a (e-ik- a)

1-2acos(k) + a2  =>      Re[ 
x

1-x ]  = 
a (cos(k)- a)

1-2acos(k) + a2  

 
and therefore 
 

 Re[ 
x

1-x ]  = 
a (cos(ωT1)- a)

1 + a2 -2acos(ωT1)   a ≡ (1-2p) p = (1-a)/2   (37.11) 

 
and then from (37.10),  
 

 R"(z) = p - (p2/a) 2 
a (cos(ωT1)- a)

1 + a2 -2acos(ωT1)   =  p -  2p2 
cos(ωT1)- a

1 + a2 -2acos(ωT1) .    (37.12) 

 
We then let Maple work on this expression a bit,  
 

 
 
from which we learn that 
 

 R"(z) = 
1
2  

(1-a2)(1-cos(ωT1))
1 + a2 - 2acos(ωT1)   =   

(1-a2) sin2(ωT1/2)
1 + a2 - 2acos(ωT1)   .      (37.13) 

 
Therefore the AMI power spectral density is given by  
 

 P(ω)  = Ppulse(ω) 
(1-a2) sin2(ωT1/2)

1 + a2 - 2acos(ωT1)    a = (1-2p) (1-a2) = 4p(1-p)  (37.14) 

 
which is valid for |a| < 1 which means 0 < p < 1.  
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(f) Summary, Plot and Limits of the AMI Spectral Power Density 
 
Using x = ω/ω1 =  ωT1/(2π) = fT1 = (37.15) can be written in these alternate forms (the last form uses 
(33.24)),  
 

 P(ω)  = Ppulse(ω) 
(1-a2) sin2(ωT1/2)

1 + a2 - 2acos(ωT1)   a = (1-2p)   (1-a2) = 4p(1-p)  (37.15) 

 

 P(ω)    =   Ppulse(ω)  
(1-a2) [sin2(πx)]
1+a2-2acos(2πx)   a = (1-2p)   (1-a2) = 4p(1-p)  (37.15a) 

 

 P(f)    =   2π Ppulse(f)  
(1-a2) [sin2(πx)]
1+a2-2acos(2πx)   a = (1-2p)   (1-a2) = 4p(1-p)  (37.15b) 

 

 P(f)    =    4p(1-p) |Xpulse(f)|2 (1/T1) 
 sin2(πfT1)

1+(1-2p)2-2(1-2p)cos(2πfT1)     (37.15c) 

 
where we recall from the text after (1.4) that X(ω) = X(f). This last result (37.15c) agrees with Bennet and 
Davey (19-123) but they have a leading factor 8 instead of 4. This is because they regard the frequency 
range for f as (0,∞) instead of (-∞,∞) so the left part of the spectrum is folded over to the right side giving 
them an extra factor of 2.  
 
Note that the AMI spectrum is completely continuous, there is no discrete part at all.  
 
Setting p = 1/2  gives a = 0 so (37.14) simplifies somewhat to give, 
 
 P(ω)    =   Ppulse(ω)  sin2(πx)   p = 1/2  .    (37.16) 
 
Selecting a box of height V and width T1 we have from (36.1)  
 

 Ppulse(ω)  = 
|Xpulse(ω)|2

2πT1
    = (VT1)2 sinc2(π 

ω
ω1 )/(2πT1) =  (V2/ω1) sinc2(π 

ω
ω1 )  (36.1) 

 
so that 
 
 P(ω)    =   V2(1/ω1) sinc2(πx) sin2(πx)    p = 1/2  x = ω/ω1  (37.17) 
 
 P(f)     =   V2T1sinc2(πfT1) sin2(πfT1)   p = 1/2  x = fT1   (37.17)' 
 
This last result agrees with Xiong (2.34) where the code is called AMI-NRZ.  
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Plot:  Ignoring now the overall factor (V2/ω1) [ or V2T1] we get this AMI p = 1/2 power spectrum 
 

  Fig 37.5 
 
This shape is the same as the continuous part of the Manchester spectrum, but the first zero is at 1 instead 
of 2 since the pulse AMI pulse is twice as wide as the Manchester pulse.  
 
The AMI Limit as p→ 0 (a → +1)   
 
Our derivation of (37.15) by either method required that |a| < 1 to obtain convergence of the geometric 
series, so we are a little wary of taking the limit a→ 1. We will find, however, that the limit gives the 
correct result so we must be getting convergence for the point a = 1 on the complex circle of convergence. 
The same comment applies to the limit a→ -1 of the next section.  
 
In this limit p = 0, we know that our pulse train is just the constant value 0 so P(ω)  = 0, so let's see how 
this happens from (37.15) 
 

   P(ω)    =   Ppulse(ω)  
(1-a2) [sin2(ωT1/2)]

1+a2-2acos(ωT1)     = Ppulse(ω) [sin2(ωT1/2)]  
(1-a2)

1+a2-2acos(ωT1)  

 
Using this limit from Appendix A 
 

 lima→+1  (1/π)  
(1-a2)

1+a2-2acos(2k)    = ∑
m = -∞

∞
  δ(k - mπ)        (A.23c) 

 
we find that 

 P(ω)   = Ppulse(ω) [sin2(ωT1/2)] π ∑
m = -∞

∞
  δ(ωT1/2 - mπ)   

          = Ppulse(ω) π ∑
m = -∞

∞
  [sin2(mπ)] δ(ωT1/2 - mπ)   =    0 since sin(mπ)  = 0 for all m 
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The AMI Limit as p→ 1 (a → -1)  
 
First of all, we can see that in this limit the AMI waveform has alternating-sign pulses. With V = 1, this 
waveform matches that shown in (34.21), 
 

 P(ω)  = Ppulse(ω)  ∑
n = ±odd

 
   δ(x - m/2)  x = ω/ω1    .    (34.21) 

  
Somehow in this limit, the all-continuous AMI spectrum becomes all-discrete! How exactly does this 
happen? Consider again our continuous AMI result, 
 

 <P(ω) >   =   Ppulse(ω)  
(1-a2) [sin2(πx)]
1+a2-2acos(2πx)   a = (1-2p)  .    (37.15a) 

 
It seems possible that this becomes discrete because when a = -1, (1-a2) = 0 and P(ω) = 0 except possibly 
at singular points where the denominator vanishes. In Appendix A it is shown that 
 

 lima→-1 δ8(k, a)  = lima→-1 (1/π)  
(1-a2) [sin2(k)]
1+a2–2acos(2k)   = ∑

m = ±odd

 
  δ(k-mπ/2)  .   (A.25a) 

 
Therefore we may write 
 
 P(ω)    =   Ppulse(ω) π δ8(πx,a)   
 

  →  Ppulse(ω) π ∑
m = ±odd

 
  δ(πx-mπ/2)  = Ppulse(ω) ∑

m = ±odd

 
  δ(x-m/2) 

 
and this agrees with our expected result shown just above.  
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38. The Change/Hold Line Code 
 
Here we mimic the previous Section on the AMI code. The calculation of <ymyn>  is similar, but not the 
same. At the end, we apply the results to the NRZI line code. 
 
(a) Pulse Shape  
 
The pulse shape is the same as for unipolar NRZ ,  
 

        Fig 36.2 
 
 Xpulse(ω) =  (VT1) sinc(ωT1/2) 
             (36.1)  
 Ppulse(ω)  = (1/2π) V2T1 sinc2(ωT1/2) 
 
In place of amplitude V we will have A and B as described below.  
 
(b) Coding 
 
The coding uses two amplitudes A and B.  Hold or Change coding means that a 0 is encoded as no change 
in the pulse amplitude (it holds, remaining what it was), while a 1 is encoded as a change A↔B. Here is 
an example starting with an A pulse:  
 
   data   =     [ 1  0  1  1  0  0  1] 
   encode =  [ A  B  B  A  B  B  B  A]  
 

                 Fig 38.1 
 
Again we shall assume an arbitrary pulse shape and insert the box-pulse at the end.  
 
(c) Expectations <ym2> and <ymyn> 
 
First consider 
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 <yn2> =  [q]A2 + [(1-q)] B2 ,  
 
where q is the probability that slot n has yn = A. In this code, since only change and hold are coded, there 
is no preference for either amplitude, so q = 1/2 and  
 
 <yn2> = (A2+B2)/2  .         (38.1) 
 
We define p to be the probability of a change (data = 1), and 1-p to be the probability of a hold (data = 0).  
 
Turning to <ynym>, consider this picture similar to that used for the AMI case, where the gap is kT1units. 
Here we arbitrarily draw A > 0 and B < 0 and we draw the pulse as square, but it could be any shape and 
A and B can have any signs.  
 

       Fig 38.2 
 
Denote the four probabilities as p(AA)k and so on.  Since slot m and slot n must each be filled with either 
an A or a B, this picture shows the only four possibilities, so (different scaling relative to AMI analysis) 
 
 p(AA)k + p(AB)k + p(BA)k + p(BB)k = 1  . 
 

Note that p(AA)k is the probability of slot m and slot n both having amplitude A in the statistical pulse 
train.  With these probabilities, we will have 
 
  <ymyn>  = p(AA)k AA + p(AB)k AB + p(BA)k BA  + p(BB)k BB  .    (38.2) 
 
In case 1, there are a certain number of holds and changes during the gap such that the overall effect is a 
hold. The number of changes must have been even. But this same statement can be made about case 4, so 
cases 1 and 4 have the same probability of existing in the pulse train. Similarly, cases 2 and 3 have the 
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same probability and in those cases the number of changes must be odd. So now we have two variables to 
worry about and they add to 1/2 : 
 
 p(AA)k + p(AB)k  = 1/2         (38.3) 
 
  <ymyn>  = p(AA)k AA + p(AB)k AB + p(AB)k BA  + p(AA)k BB 
  
  = p(AA)k ( AA + BB) + p(AB)k (AB + BA)   
so 
 <ymyn>  = p(AA)k( A2 + B2)  + p(AB)k 2AB  .      (38.4) 
  
If the gap is zero, what is the probability of having an adjacent AA in the pulse stream? The probability of 
having the left A is 1/2, and the probability for an A being followed by a A is 1-p. Therefore 
 
 p(AA)0  = (1/2)(1-p)   .         (38.5) 
 
Consider now the gap as shown at value k. We claim that 
 
 p(AA)k+1 = p(AA)k (1-p)  + p(AB)k p   .       (38.6) 
 
Proof:  If it was an AA to start with gap k, then to be AA with gap k+1 we have to add another A which 
has probability (1-p) since this is a hold. Conversely, if it was an AB we have to add an A which is a 
change, which has probability p. Then from (38.3) we rewrite (38.6) as 
 
 p(AA)k+1 = p(AA)k (1-p)  + (1/2 -  p(AA)k ) p   .      (38.7) 
 
To simplify notation, let Xk ≡ p(AA)k so that p(AB)k  = 1/2 - Xk . Then (38.4) and (38.7) become 
 
 <ymyn>  = Xk (A2 + B2)  + (1/2 - Xk)2AB  = (A-B)2Xk + AB    (38.8)  
 
 Xk+1 = Xk (1-p) + (1/2-Xk) p   = (1-2p)Xk  + p/2 
     = aXk + p/2           a ≡ 1-2p , same as for AMI  (38.9) 
 
Maple solves this recursion equation as follows, using (38.5) that X0 = (1/2)(1-p),  
 

 
so we find that 
 
 Xk = (1 + ak+1)/4  = p(AA)k  .        (38.10) 
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As a check, suppose p = 0 so there can be no changes. Then a = 1 and p(AA)k = 1/2.  We can now have 
only case 1 or case 4, so we know p(AB)k = 0, and that is consistent with p(AA)k + p(AB)k  = 1/2 .  
 
Continuing from (38.8),  
 
 <ymyn>  = (A-B)2Xk + AB  = (A-B)2(1 + ak+1)/4 + AB 
 
  = [ (A-B)2/4] ak+1 + (A-B)2/4   + AB 
 
  = [ (A-B)2/4] ak+1 + [(A+B)2/4] 
 
  = (1/4) [ (A-B)2 ak+1  + (A+B)2 ]        (38.11) 
 
and we note that the result is indeed symmetric under A↔ B. Again for p = 0 (always hold, a=1) we find 
that <ymyn> = (A2+B2)/2  which is the same then as <yn2>. For a constant pulse train, the amount of slot 
separation makes no difference.  
 
Since k = |m-n| - 1 in general, we get these final results,  
 
 <ymyn> =  (1/4) [ a|m-n| (A-B)2 +  (A+B)2 ]   m ≠ n  a ≡ 1-2p 
 
 <yn2> = (A2+B2)/2  .         (38.12) 
 
(d) The autocorrelation sequence 
 
We assume the Change/Hold code generator is stationary as defined in (35.10). Presumably this will be 
the case unless some non-stationary data stream is fed into the Change/Hold encoder. With this 
assumption we can use (35.24) to relate the ensemble averages in (37.8) of our infinite sequence to the 
horizontal averages <...>1, 
 
 rs  =  <ymym+s>1  =  <ymym+s>    s≠ 0 
 r0   = <ym2>1    =  <ym2> 
 
where rs = <ymym+s>1 is the autocorrelation sequence for the ym. Thus we have from (38.12)  
 
 rs =  (1/4) [ a|s| (A-B)2 +  (A+B)2 ]   s ≠ 0  a ≡ 1-2p 
 r0 = (A2+B2)/2  .          (38.13) 
 
Note that for p = 0, we get rs = (1/4) [ 1|s| (A-B)2 +  (A+B)2 ]  = (A2+B2)/2  = r0, so in this case the 
autocorrelation plot will be a horizontal line (red below) at this value (A2+B2)/2. This is the case of never 
any change, so half our ensemble is all A and half is all B which is why <ym2>  = (A2+B2)/2.  
  
We now plot the autocorrelation function for various p values using this code 
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For all plots below, we assume A = 1, and we plot curves for  p = 1/n for n = 0 to 10 giving  
 

 B = 1  (a) 
 
Since B = A = 1, there is no change whether or not we "hold" or change", so all plots are the same.  

      B = 1/2  (b) 
   

  B = 0 (c) 
 

   B = -1/2   (d) 
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 B = -1  (e) 
 
   [ label n means p = n/10]     Figures 38.3 (a) through (e) 
 
For each set of plots other than the first, as p ranges from 0 to 1/2, the infinite range correlation of having 
no change (red curve, p = 0) reduces (underdamped, shall we say), and for p = 1/2 we have a constant 
value for |s| ≥ 1 (critically damped). Then for p > 1/2 we have "oscillation" (overdamped). The ultimate 
case occurs when p = 1 where there the values A = 1 and B = -1 strictly alternate, so we have a square 
wave. As we relatively slide a pair of these square waves to create the autocorrelation function, as 
expected correlation jumps between +1 for even symbol shifts and -1 for odd symbol shifts (gray curve).  
 
(e) Power Spectral Density Calculation using the Autocorrelation Method 
 
As outlined in Section 35, we have two methods to find the power spectrum. Here we shall use the 
"autocorrelation method" where R"(z) is the Z Transform of rs .  
 
 P(ω)  = Ppulse(ω) R"(z)  z = eiωT1      (34.14a)  
 
Our task then is to compute R"(z) from the autocorrelation sequence rs given in (38.13) 
 
 rs =  (1/4) [ a|s| (A-B)2 +  (A+B)2 ]   s ≠ 0  a ≡ 1-2p 
 r0 = (A2+B2)/2  .          (38.13) 
 
So:   

 R"(z) = ∑
s = -∞

∞
  rs z-s  = (A2+B2)/2  + (1/4) (A-B)2 ∑

s ≠ 0

 
   a|s| z-s + (1/4) (A+B)2  ∑

s ≠ 0

 
  z-s   (38.14) 

 
The two sums have (conveniently) already been computed:  
 

 ∑
s ≠ 0

 
   a|s| z-s    =  2 

a (cos(ωT1)- a)
1 + a2 -2acos(ωT1)     |a| < 1      (=2 Re[

x
1-x ]) (37.10) and (37.11) 
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   ∑
s ≠ 0

 
   z-s  =  ∑

s = -∞

∞
   z-s - 1 = ∑

m = -∞

∞
  2πδ(ωT1 - 2πm)  -  1 z = eiωT1 (13.2) with k = ωT1 

 
 Thus  

R"(z) = (A2+B2)/2 + (1/4) (A-B)2 [2 
a (cos(ωT1)- a)

1 + a2 -2acos(ωT1) ] + (1/4) (A+B)2[ ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)  -  1] 

 

  =  (1/4) (A-B)2 +  (1/4) (A-B)2 [2 
a (cos(ωT1)- a)

1 + a2 -2acos(ωT1) ] + (1/4) (A+B)2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm) 

 

  =   (1/4) (A-B)2  [ 1 + 2 
a (cos(ωT1)- a)

1 + a2 -2acos(ωT1) ]    +   (1/4) (A+B)2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm) 

  

  =   (1/4) (A-B)2  
(1-a2)

1 + a2 - 2acos(ωT1)    +   (1/4) (A+B)2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)  (38.15) 

 
Installing this result into (34.14a) which says P(ω)  = Ppulse(ω) R"(z), we get a final result for the power 
spectral density of the Change/Hold line code:  
 

 P(ω)  =  Ppulse(ω) { [ 
(A-B)

2   ]2 
(1-a2)

1+a2-2acos(ωT1)   +  [ 
(A+B)

2   ]2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) } (38.16) 

         a = (1-2p) (1-a2) = 4p(1-p)  
 
 (f) Summary, Limits and Plot of the Change/Hold Spectral Power Density 
 
We shall now investigate various limits of our final result which was (38.16),  
 

 P(ω)  =  Ppulse(ω) { [ 
(A-B)

2   ]2 
(1-a2)

1+a2-2acos(ωT1)   +  [ 
(A+B)

2   ]2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) } (38.17) 

 
Limit A → B:  Setting A = B in (38.17) gives 
 

 P(ω)    =   Ppulse(ω) { A2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) }   .     (38.18) 

 
In the case that the pulse is a box of unit height we use (34.22),  
 
 Ppulse(ω) =  (1/ω1) sinc2(ωT1/2)        (38.19) 
 
to get 
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   P(ω)    =  A2 Ppulse(ω) ∑
m = -∞

∞
  2π δ(ωT1-2πm) 

   =  A2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) (1/ω1) sinc2(πm)  = A2 2π δ(ωT1) (1/ω1)   

 
   =  A2 δ(ω)  .         (38.20) 
 
This is exactly what we expect when A = B, since the pulse train is then just a constant value A  !  
 
Limit p→1  ( a → -1) :  
 
In this limit we expect to get a square-wave pulse train with alternating values A and B. We make use of 
this limit from Appendix A with 2k = ωT1,  
 

 lima→-1  
(1-a2)

1+a2 -2acos(ωT1)   =  π ∑
m = ±odd

 
  δ(ωT1/2-mπ/2)  =  ∑

m = ±odd

 
  2π δ(ωT1-mπ)  (A.25b) 

 
and then the Change/Hold spectral power density (38.17) becomes 
 

 P(ω)  =  Ppulse(ω) {  [ 
(A-B)

2   ]2 ∑
m = ±odd

 
  2π δ(ωT1-mπ)   +  [ 

(A+B)
2   ]2 ∑

m = -∞

∞
  2π δ(ωT1-2πm) } . 

  
Installing from (34.22) the unit-height box pulse shape Ppulse(ω) = (1/ω1) sinc2(ωT1/2) and using 

(38.20) the second term becomes just  [ 
(A+B)

2   ]2 δ(ω) while the first term is 

 

 [ 
(A-B)

2   ]2 ∑
m = ±odd

 
  2π δ(ωT1-mπ) (1/ω1) sinc2(mπ/2)  

   =   [ 
(A-B)

2   ]2 2π ∑
m = ±odd

 
  δ(ωT1-mπ) (1/ω1) (mπ/2)-2 

   =   (A-B)2  (1/π2) ∑
m = ±odd

 
  (1/m2) δ(ω - mω1/2)   

giving a final result, 
 

 P(ω) = [ 
(A-B)
π   ]2 ∑

m = ±odd

 
  (1/m2) δ(ω - mω1/2)  + [ 

(A+B)
2   ]2 δ(ω)  .    (38.21) 

 
Comparing the first term with (34.23), we see that it is the spectrum of a square wave whose peak-to-peak 
amplitude is (A-B), which is exactly what it should be since every pulse is a "change". The second term 
then correctly accounts for the expected average DC level of (A+B)/2.   
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Limit p→0  ( a → +1) : 
 
In this case for a square wave we expect to get a result appropriate for an ensemble of pulse trains half of 
which have constant value A and the other have constant value B, since all pulse trains are in a permanent 
hold state with p = 0; nothing changes. This time we use this limit (A.23c) with 2k = ωT1,  
 

 lima→+1   
(1-a2)

1+a2-2acos(ωT1)    = π ∑
m = -∞

∞
  δ(ωT1/2 - mπ)  = ∑

m = -∞

∞
  2πδ(ωT1 - m2π)    (A.23c) 

 
to get from (38.21),  
 

 P(ω)  =  Ppulse(ω) {  [ 
(A-B)

2   ]2  ∑
m = -∞

∞
  2π δ(ωT1 - 2mπ)   +  [ 

(A+B)
2   ]2 ∑

m = -∞

∞
  2π δ(ωT1-2πm) } 

          =   
A2+B2

2   Ppulse(ω) ∑
m = -∞

∞
  2π δ(ωT1 - 2mπ)  .     (38.22) 

 
Ignoring the leading factor, this agrees with the first line of (33.25) which was developed for a simple 
pulse train with unit amplitudes yn = 1. This result then describes the average spectral power of an 
ensemble in which 50% of the pulse trains have amplitude A and the rest amplitude B. 
 Installing the square pulse spectrum (34.22) Ppulse(ω) = (1/ω1) sinc2(ωT1/2) gives 
 

 P(ω)   =  
A2+B2

2   (1/ω1) sinc2(ωT1/2) ∑
m = -∞

∞
  2π δ(ωT1 - 2mπ) 

      =   
A2+B2

2   (1/ω1) 2π δ(ωT1)   =   
A2+B2

2   (T1ω1)-1 2π δ(ω) 

 

   =  
A2+B2

2   δ(ω)  

 
which describes an ensemble of constant pulse trains 50% of which are x(t) = A and the rest x(t) = B.  
 
Limit p→1/2  ( a → 0)  
 
Recall again the general result (38.17),  
 

 P(ω)  =  Ppulse(ω) { [ 
(A-B)

2   ]2 
(1-a2)

1+a2-2acos(ωT1)   +  [ 
(A+B)

2   ]2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) } (38.17) 

             
The big ratio becomes unity so the spectral power density is then 
 

 P(ω)   =   Ppulse(ω) {  [ 
(A-B)

2   ]2   +  [ 
(A+B)

2   ]2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) }  .   (38.23) 
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Box-Shaped Pulse for general p:  Start as just above with (38.171) and insert Ppulse(ω)  for the box,  
 

 P(ω)   =   Ppulse(ω) {  [ 
(A-B)

2   ]2 
(1-a2)

1+a2-2acos(ωT1)    +  [ 
(A+B)

2   ]2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) } 

 Ppulse(ω) =  (1/ω1) sinc2(ωT1/2)  . 
 

As usual, the second term becomes [ 
(A+B)

2   ]2 δ(ω) , so the result is  [ a = 1-2p,  x = ω/ω1 = fT1 ] 

 

 P(ω)  = [ 
(A-B)

2   ]2 (1/ω1) sinc2(ωT1/2) 
(1-a2)

1+a2 -2acos(ωT1)  +  [ 
(A+B)

2   ]2 δ(ω)  (38.24) 

 

 P(f)  =    [ 
(A-B)

2   ]2 T1 sinc2(πfT1) 
(1-a2)

1+a2 -2acos(2πfT1)     +   [ 
(A+B)

2   ]2 δ(f)   .  (38.24)' 

 
Box-Shaped Pulse for p = 1/2  (a = 0):  
 

 P(ω)  = [ 
(A-B)

2   ]2 (1/ω1) sinc2(ωT1/2)   +   [ 
(A+B)

2   ]2 δ(ω) 

             (38.25) 

            =  (1/ω1) {     [ 
(A-B)

2   ]2 sinc2(πx)    +   [ 
(A+B)

2   ]2 δ(x)    }    x ≡ 
ω
ω1    = f T1 

 

 P(f)  =  T1 [ 
(A-B)

2   ]2 sinc2(πfT1)   +   [ 
(A+B)

2   ]2 δ(f) .    (38.25)' 

 
Ignoring the factor (1/ω1) in (38.25), we make this plot of P(ω) , which is the same as for unipolar NRZ 
but with different scaling factors for the two terms,  

    Fig 38.4 
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Example 1:  Unipolar NRZI line code 
 
Coding:  This is a special case of Change/Hold encoding where A = 1 and B = 0.  
 
   data   =     [ 1  0  1  1  0  0  1] 
   encode =  [ 1  0  0  1  0  0  0  1]  
 

                 Fig 38.5 
 
NRZI means NRZ Invert-on-1, where NRZ means non-return to zero (see comments at the start of 
Section 36). NRZI does not mean "NRZ inverted". Some other sources use A = 0 and B = 1 so then 
transitions happen on 0 instead of 1, as in the standard for USB (Universal Serial Bus). The Change/Hold 
spectra are symmetric in A↔B, so the NRZI spectra are the same for either convention.  
 
Expectation Values 
 
 <ymyn> =  (1/4) [ a|m-n| (A-B)2 +  (A+B)2 ]   =  (1/4) [ a|m-n| +  1 ] 
 
 <yn2> = (A2+B2)/2  = 1/2         (38.26) 
 
Spectrum: From (38.17), and with a = (1-2p),  
 

 P(ω)  =  Ppulse(ω) {  [ 
(A-B)

2   ]2 
(1-a2)

1+a2 -2acos(ωT1)    +  [ 
(A+B)

2   ]2 ∑
m = -∞

∞
  2π δ(ωT1-2πm) } 

           = Ppulse(ω) {  
1
4   

(1-a2)
1+a2 -2acos(ωT1)    + 

1
4  ∑

m = -∞

∞
  2π δ(ωT1-2πm) } .   (38.27) 

  
Box-Shaped Pulse for general p:  From (38.24),  
 

 P(ω)  = 
1
4  (1/ω1) sinc2(ωT1/2) 

(1-a2)
1+a2 -2acos(ωT1)    +  

1
4  δ(ω)  .    (38.28) 

 
Box-Shaped Pulse for p = 1/2  (a = 0):  From (38.25),  
 

 P(ω)  =  (1/ω1) {    
1
4  sinc2(πx)   +   

1
4  δ(x)    }      x ≡ 

ω
ω1   =  fT1   (38.29) 

 

 P(f)  =   T1  
1
4  sinc2(πx)   +   

1
4  δ(f)  .        (38.29)' 

 
The plot is that of Fig 38.3, but with each factor being 1/4.   
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The spectrum (38.29) is exactly the same as that for unipolar NRZ shown in (36.3) with V = 1. One way 
to understand this fact is that for every NRZ sequence yn there is an NRZI sequence y'n ,  
 
 y'n = yn – yn-1  .  // mod-2 math  
 
This equation can be solved for yn in terms of y'n (assume y0= 0),  
 
 yn = Σm=1n y'm    n = 1,2,3.... 
 
Consider the space of all random sequences of 1's and 0's ( random pulse trains p = 1/2). Since we just 
showed that the relation {yn} ↔ {y'n} is one-to-one, the mapping f: {yn}→{y'n} just reorders the set of 
random sequences in the ensemble used to compute the spectral power density, so that density cannot 
change.  
  In contrast, for p ≠ 1/2, the NRZI power spectrum (38.28) is quite different from the NRZ power 
spectrum (36.3),  
 

 P(ω)  = 
1
4  (1/ω1) [ sinc2(πx) 

(1-a2)
1+a2 -2acos(ωT1)  +  δ(x)]    // unipolar NRZI (38.28) 

              a = (2p-1)  

 P(ω)  =  
1
4  (1/ω1) [sinc2(πx) (1-a2)   +  (2p)2 δ(x)]     // unipolar NRZ  (36.3) 
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Example 2:  Bipolar NRZI line code 
 
   data   =     [ 1  0  1  1  0  0  1] 
   encode =  [ 1 -1 -1  1 -1 -1 -1  1]  
 

               Fig 38.6 
 
In this case A = 1 and B = -1 so the general Change/Hold spectrum (38.17) becomes 
 

 P(ω)  =   Ppulse(ω)   
(1-a2)

1+a2 -2acos(ωT1)    a = (2p-1) // bipolar NRZI   (38.30) 

 
and for p = 1/2  (a=0) we obtain,  
 
 P(ω)  =   Ppulse(ω)  .  // = (1/2π) T1 sinc2(ωT1/2)  for the box pulse (36.1) (38.31) 
 
In contrast, the Bipolar NRZ spectrum is the general result shown in box (35.37) 
 

 P(ω) =  Ppulse(ω) [ σ2 + μ2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)]      (35.28) 

 
with (as shown below Fig 36.5) σ2 = 4p(1-p) = (1-a2) and μ2 = (1-2p)2 = a2,  so 
 

 P(ω) =  Ppulse(ω) [ (1-a2) + a2 ∑
m = -∞

∞
  2πδ(ωT1 - 2πm)] // bipolar NRZ   (38.32) 

  
If p = 1/2 (a = 0) then the Bipolar NRZ spectrum becomes 
 
 P(ω) =  Ppulse(ω)          (38.33) 
 
which is the same as for Bipolar NRZI.  
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Appendix A: Delta Function Technology 
 
The delta function is a mathematical tool that simplifies the description of mathematical relationships and 
allows one to consider certain idealized situations which cannot really exist in practice. The down side is 
that delta functions also serve to confuse readers who are not used to working with them. As later sections 
of this monograph were written, it became apparent that much of the development leans fairly heavily on 
"delta function technology", and one must understand delta functions at a somewhat deeper level than 
presented in Section 1. Of particular importance for spectral power density is our special meaning for the 
symbol δ(0) which appears in Chapter 6.  
 Early authors were squeamish about using the Dirac delta function (for example, Smythe). The theory 
of distributions was made rigorous in the 1935-1940 era by Sobolev and then Schwartz. The theory makes 
use of a class of extremely smooth functions and operators called linear functionals, and the reader can 
find a good presentation in Stakgold Chapters 1 and 5.  
 In brief, a functional T is just a mapping from some Hilbert Space to the real numbers. Usually that 
Hilbert Space is a set of reasonable functions defined on some interval. One can write a functional T in 
this notation:  <T,f> = real number, some function of T and f. A functional is linear if it does the usual 
things like <T,f1+f2> = <T,f1> + <T,f2>.  
 A distribution t is any linear functional which acts on a certain subset of all possible functions f. It 
acts (theoretically) only on the subset of smooth functions φ called test functions. Thus, a distribution t is 
represented as <t,φ> = real number, a function of t and φ.  
 For example, every reasonable real function f defines a linear functional and thus a distribution in this 
manner, where we happen to use the interval (-∞,∞),  
 

 <f,φ> =  ∫
-∞

 ∞ dx f(x)φ(x)  . 

 
Obviously the integral of real functions is some real number. The function f(x) must be reasonable 
enough so that the integral is well behaved (it is "locally integrable").  
 In this context, the linear functional which defines the distribution known as the delta function is 
given as 
 
 <δξ,φ> = φ(ξ)   special case: <δ,φ> = φ(0) 
or 

  ∫
-∞

 ∞ dx δ(x-ξ)φ(x)  = φ(ξ)     ∫
-∞

 ∞ dx δ(x)φ(x)  = φ(0) 

 
which we normally think of as the sifting property (2.3). The thing δξ is the distribution (the linear 
functional name), while the thing written as δ(x-ξ) is a "symbolic function" or "generalized function" 
associated with the distribution δξ. But loosely speaking, one refers to δ(x-ξ) as the distribution.  
 The general idea is that functions like δ(x) or δ'(x) have a meaning only when they are inside an 
integral. When they appear standing alone, they are "symbolic functions", such as in (4.6)  
[ RC d/dt + 1] g(t) = δ(t). This is a symbolic or distributional equation which acquires meaning when both 
sides are placed inside the same integration. Formally that integration should be against a test function, 
but we can think of it as being against any reasonable function; the main idea is that everything must 
converge.  
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 Although the above discussion is expressed in terms of one dimensional integrals, the concept applies 
in any number of dimensions. For example, δ(3)(r - a) is a delta function in 3D space.  
 The reader does not have to go learn the theory of distributions in order to follow this appendix, but it 
is good to know that such a theory exists and justifies the manipulations done all the time with delta 
functions.  
 
(a) Models for Delta Functions and two derivations of (2.1) 
 
By "model" we mean a sequence of smooth functions which all have unit area and which in some limit 
become isolated about a certain point on the real axis. The essential requirements for a delta function 
candidate are these:  
 

 limε→0  ∫
-ε

 ε dk δ(k) = 1 δ(k) = 0 for any k>0 and for any k<0    (A.1) 

 
These equations say that the area under δ(k) is 1 and the function δ(k) is isolated to an infinitely small 
neighborhood of k = 0. There are an infinite number of possible delta function models, and we shall 
consider several in this appendix, many of which are used in the main text.  
  
Our first candidate delta function model is the pulse shown in (9.1) with τ/2 set to 1/(2A),  
 

  δ1(k,A) ≡ A [ θ(k + 
1

2A ) - θ(k - 
1

2A ) ] 

             (A.2) 

         Fig A.1  
 
In the limit A→∞, the box becomes very tall and very localized and maintains area 1, so  
 
 limA→∞ δ1(k,A)  = δ(k) .          (A.3) 
 
Here are two candidates δ2(k,A) and δ2'(k,A) for which we just show engineering drawings and no 
equations,  
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             Fig A.2 
 
Both these candidates meet our requirements (A.1). Notice that both have unit area, and both get 
horizontally compressed around k = 0  as A→ ∞ and both get "tall". Thus we can say 
 
 limA→∞ δ2(k,A)  = δ(k)         (A.4) 
 
 limA→∞ δ2'(k,A)  = δ(k) .        (A.5) 
    
For our first model δ1 we get δ(0) = +∞ while for the last two models we get δ(0) = -∞ and δ(0) = 0. It is 
in fact possible to construct a model in which δ(0) comes out being any desired real number. This number 
δ(0) has no significance because the point k = 0 is singular and the limit of δ(k) approaching this point 
from either direction does not exist. This is a much more serious matter than both limits existing and 
being different, which is the case for the Heaviside θ function which has a simple discontinuity at t = 0,  
 

    Fig A.3 
 
From the left, the limit is 0, from the right, the limit is 1, and the Fourier-correct value at the 
discontinuous point is θ(0) = 1/2 (as shown in Section 8 (c)).  
 
Our next model of interest is this, 
 

 δ3(k,A)  ≡  
1
4πA

   exp( -k2/4A)         (A.6) 

 
which is a Gaussian centered at k = 0. This function has area = 1 for any A > 0,  
 

 
 
The half-width of (A.6) occurs roughly when k2/4A = 1, so the full width is then Δk ≈ 4 A . Here is a 
plot with A = .05 for which Δk ≈ 4 .05  = 0.9,  
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        Fig A.4 
 
As A→0, the Gaussian becomes taller and narrower and we then have 
 

 limA→0 δ3(k,A)  = limA→0 
1
4πA

   exp( -k2/4A)  =  δ(k).     (A.7)  

 
Now consider this standard integral  ( GR 3.323.2 where a = p2 and b = q ),  
 

  ∫
-∞

 ∞  dx  exp[ - ( ax2 + bx ) ]  =  
π
a    exp[ (b2/4a) ] .    (A.8) 

 
Setting a = A, b = -ik  gives 
 

   ∫
-∞

 ∞  dx eikx exp(-Ax2)  =  
π
A    exp(-k2/4A)  =  2π {  

1
4πA

   exp( -k2/4A) } 

or 

   ∫
-∞

 ∞  dx eikx exp(-Ax2)   = 2π δ3(k,A).        (A.9) 

 
Taking the limit A→0 of both sides gives 
 

   ∫
-∞

 ∞  dx eikx = 2πδ(k) .         (A.10) 

 
This then is our first distribution theory derivation of (2.1).  
 
Here is another candidate delta function model :  
 

 δ4(k,B) ≡  
sin(Bk)

 πk    = 
B
π   

sin(Bk)
 Bk    = 

B
π   sinc(Bk)       (A.11) 

 
The area under (B/π) sinc(Bk) is unity,  
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The half-width of (A.11) is determined roughly by the first zero of sin(Bk) = 0 so Bk = π.  
The full width of the peak is then Δk = 2π/B.  Here is a plot for B = 10 with Δk ≈ 2π/10 = 0.6.  
 

        Fig A.5 
 
As B gets large, the function shrinks in around k = 0, and we then have 
 

 limB→∞ δ4(k,B)   =  limB→∞  
sin(Bk)

 πk    = limB→∞  
B
π   sinc(Bk)   =   δ(k) .   (A.12) 

 
Now consider this simple integral 
 

  ∫
-B

 B  dx eikx  = 2 ∫
0

 B  dx cos(kx)  = 2 
sin(kB)

 k    = 2π  
sin(kB)

 πk    =  2π  δ4(k,B)  (A.13) 

 
Taking the limit as B→0 we find 
 

  ∫
-∞

 ∞  dx eikx  = 2  ∫
0

 ∞  dx cos(kx)  = 2π δ(k)      (A.14) 

 
and we have a second derivation of (2.1).  
 
(b) Models for Periodic Delta Functions 
 
We start here with the following delta function model,  
 

 δ5(k,N) ≡  
1

2π  
sin[(N+1/2)k]

 sin (k/2)               (A.15) 

 
and we shall be interested in the limit N→∞. This particular candidate is periodic in k with period 2π, as 
we now show:  
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 sin[(N+1/2)(k+2π)] = sin [(N+1/2)k  + 2π(N+1/2) ]  = sin [(N+1/2)k  + π ]  = - sin [(N+1/2)k] 
 
 sin[(k+2π)/2] = sin(k/2 + π) = -sin(k/2) 
 

 => 
sin[(N+1/2)(k+2π)]

 sin[(k+2π)/2]   =   
sin[(N+1/2)k]

 sin (k/2)        => δ5(k+2π,N)  =  δ5(k,N)  (A.16) 

 
Looking at the peak at k = 0 for large N, the half width occurs at the first zero of sin[(N+1/2)k] so Nk ≈ π. 
The full width is then Δk ≈ 2π/N. Here is a plot of the central peak for N = 60 for which Δk ≈ 0.1 
 

       Fig A.6 
 
The periodicity of δ5  is apparent if we plot 2π δ5(k,N) for N = 60, 
 

   Fig A.7 
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where the peaks are separated by 2π. We are going to show that 
  

 limN→∞ δ5(k,N) =  δ(k) + δ(k-2π) + δ(k+2π) + .....    = ∑
m = -∞

∞
  δ(k - 2πm) .   (A.17) 

 
As N gets large, each red region of activity becomes isolated more and more to the location of the 
putative delta function peak. The function approaches 0 anywhere between the peaks in the following 
sense (which has a very distributional flavor). As N → ∞, the numerator of δ5(k,N) oscillates faster and 
faster. When averaged over any tiny region of width ε, we can make N large enough to make this average 
be arbitrarily small. For example, when averaged over 1 nanometer of the above plot near k = 2, we can 
find a sufficiently large N to make this average be smaller than 10-100. This is the basic idea of 
something "washing out". Thus, we realize our delta function requirement that δ(k) = 0 for k ≠ n2π. The 
other requirement is that we must show that the area under each delta peak is unity.  
 
Consider a close neighborhood of the central peak in Fig A.7. For large N, only a small region of k near 
the central peak |k| < Δk ≈ π/N contributes to δ5 as the Figures above show, since sin[(N+1/2)k] oscillates 
so fast beyond this region. In this region we can approximate sin(k/2) by (k/2) so that  
 

 δ5(k,N) ≡  
1

2π  
sin[(N+1/2)k]

 sin (k/2)   ≈  
1

2π  
sin[(N+1/2)k]

 (k/2)    =   
(N+1/2)k
2π(k/2)   sinc[(N+1/2)k]    

 

       =  
(N+1/2)

π   sinc[(N+1/2)k]  = δ4(k,N+1/2)  // using (A.11)     

 
We already know that the area under δ4 is 1, and that it is a viable delta function model. But since δ5 is 
periodic, all its peaks must look like δ4.  Broadening our scope to the entire k axis, we conclude that 
 

 δ5(k,N)  ≈ ∑
m = -∞

∞
  δ4(k - 2πm, N+1/2)   for large N    (A.18) 

   
As N → ∞ we then get 
  

 limN→∞ δ5(k,N)  =  limN→∞  
1

2π  
sin[(N+1/2)k]

 sin (k/2)        =    ∑
m = -∞

∞
  δ(k-2πm)    (A.19) 

 
Our next multi-peak delta function candidate is the following,  
 

 δ6(k,N) ≡  
1

2π   
[2πδ5(k,N)]2

(2N+1)    =   
1

2N+1  
sin2[(N+1/2)k]
 2π sin2(k/2)  .    (A.20) 

 
This δ6 has the same periodicity of δ5 so has identical peaks spaced by 2π in k. Here is the central peak 
for N = 20 
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       Fig A.8 
 
and the width is Δk ≈ 2π/N, the same as for δ5. In the region of contribution, we again set sin(k/2) ≈ k/2 
so that 
 

 δ6(k,N) ≈ 
1

2N+1  
sin2[(N+1/2)k]

 2π (k/2)2   = 
[(N+1/2)k]2

2π(2N+1)(k/2)2 sinc2[(N+1/2)k]  = 
(2N+1)

2π   sinc2[(N+1/2)k] 

 
       =  (B/π) sinc2(Bk)  B = N+1/2 
 
The area under δ6 for any N is unity,  
 

  
 
Since δ6 has the same periodicity as δ5, it has the same limit as N→∞ 
 

 limN→∞ δ6(k,N)  =  limN→∞ 
sin2[(N+1/2)k]

 (2N+1)2π (k/2)2    =  ∑
m = -∞

∞
  δ(k-2πm)     (A.21) 

 
Our interest in δ6 is that it is a delta function model formed by squaring another delta function model.  
 
Consider next the following candidate delta function model,  
 

 δ7(k, a) ≡  (1/π)  
(1-a2) [cos2(k)]
1+a2+2acos(2k)         (A.22) 

 
We are interested in this model as a → -1.  Here is a motivating plot of δ7 for a = -0.9 : 
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  Fig A.9 
 
First of all, we can see that δ7 is periodic in k having period π, since both cos2(k) and cos(2k) have period 
π. Near a = -1, the denominator approaches 2 -2cos(2k) = 2(1-cos(2k)) = 4sin2(k) which vanishes at k = 
mπ for m integer. As long as we avoid these points, we can see that lima→-1 δ7(k, a) = 0 for k ≠ mπ due 
to the (1-a2) factor in the numerator. We need only show that the integral if δ7 is 1 when taken in a small 
region around one of the delta peaks. As before we consider the peak at k = 0 and compute the integral 
 

 limε→0 
 ∫

-ε

 ε dk [lima→-1δ7(k, a)]  = limε→0 lima→-1
 ∫

-ε

 ε dk  {(1/π)  
(1-a2) [cos2(k)]
1+a2+2acos(2k) }   

 

  = lima→-1 limε→0
 ∫

-ε

 ε dk  {(1/π)  
(1-a2) [cos2(k)]
1+a2+2acos(2k) }   // interchange limit order 

 

   = lima→-1 limε→0{(1-a2)  ∫
-ε

 ε dk 
1

1+a2+2acos(2k) }  // cos(k) ≈ 1 for ε << 1 

 

  =  (1/π) limε→0 lima→-1 {(1-a2)  ∫
-ε

 ε dk 
1

1+a2+2acos(2k) }   // interchanged limit order again 

 
In passing, note that the cos2(k) numerator factor really plays no role in things and we could have set it to 
1 in δ7, but we kept it since it appears there in our AMI application. We now have Maple do the integral 
as follows,  
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We now continue the above evaluation,  
 

  = (1/π) limε→0 lima→-1{(1-a2) [ 2 
1

a2-1  tan-1( 
a-1
a+1  tanε ) ]  

 =  -(2/π) limε→0 lima→-1{ tan-1( 
a-1
a+1  tanε ) }    

 = - (2/π) limε→0 { tan-1(- ∞) }    // argument of tan-1 is  (
-1-1
+0  tanε)  = (-∞) 

 
 = - (2/π) limε→0 { -π/2 }  =   - (2/π)(-π/2)  =  1  . 
 
In this model, the area under δ7 is not unity for any value of a, so we have to deal with both limits in our 
evaluation. There are Moore-Osgood theorem subtleties involving the limit order interchanges which 
could be reviewed, but we omit that level of detail.  
 
Therefore we have shown that in the region of the central peak.  
 
 lima→-1δ7(k, a)  = δ(k)  -π < k < π      
 
Since δ7 is periodic with period π, we know that the full result for all k is this 
 

 lima→-1δ7(k, a)  =   lima→-1  (1/π)  
(1-a2) [cos2(k)]
1+a2+2acos(2k)    = ∑

m = -∞

∞
  δ(k - mπ)     (A.23a) 

 
If we remove [cos2(k)] from the limit and then divide both sides of the right equation above by this value, 
we get on the right that  [cos2(k)]  = cos2(mπ) = 1, so the following is also true 
 

 lima→-1  (1/π)  
(1-a2)

1+a2+2acos(2k)    = ∑
m = -∞

∞
  δ(k - mπ)        (A.23b) 

 
which is really a more fundamental result. Changing a→-a this can also be written 
 

 lima→+1  (1/π)  
(1-a2)

1+a2-2acos(2k)    = ∑
m = -∞

∞
  δ(k - mπ)        (A.23c) 
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Going back to (A.23a), if we change from k to k' = k + π/2, then 
 
 cos(k) = cos(k'-π/2) = sin(k')  
 cos(2k) = cos(2k'-π) = - cos(2k')  . 
 
Then δ7 may be written  
 

 δ7(k, a) ≡  (1/π)  
(1-a2) [cos2(k)]
1+a2+2acos(2k)  => δ7(k'-π/2, a) ≡  (1/π)  

(1-a2) [sin2(k')]
1+a2–2acos(2k')   

 
Then from  (A.23a) 
 

 lima→-1δ7(k'-π/2, a)  = ∑
m = -∞

∞
  δ(k'-π/2 - mπ)  = ∑

m = -∞

∞
  δ(k'- [m+1/2]π) . 

 
Change the summation index to n = 2m+1, so that m+1/2 = n/2. The n sum then includes only odd 
integers from -∞ to ∞, so  
 

 lima→-1δ7(k'-π/2, a)  = ∑
n = ±odd

 
  δ(k'-nπ/2)  . 

 
Thus we have arrived at a new multi-delta function model δ8(k',a) ≡ δ7(k'-π/2, a) to get 
 

 δ8(k, a) ≡  (1/π)  
(1-a2) [sin2(k)]
1+a2–2acos(2k)         (A.24) 

 lima→-1 δ8(k, a)  = lima→-1 (1/π)  
(1-a2) [sin2(k)]
1+a2–2acos(2k)   = ∑

m = ±odd

 
  δ(k-mπ/2)   (A.25a) 

 
This is the delta model needed to take the p→ 1 limit of our AMI spectrum in Section 37.  
 If we extract [sin2(k)] from the limit and divide both sides of the rightmost equation by this quantity 
and note that sin2(mπ/2)  = 1 for all odd values of m, we get these alternate forms:  
 

 lima→-1 (1/π)  
(1-a2)

1+a2–2acos(2k)   = ∑
m = ±odd

 
  δ(k-mπ/2)      (A.25b) 

 

 lima→+1 (1/π)  
(1-a2)

1+a2+2acos(2k)   = ∑
m = ±odd

 
  δ(k-mπ/2)      (A.25c) 
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(c) Derivation of (13.2) and (13.3) 
 
The first goal here is to derive this equation,  
 

 ∑
n = -∞

∞
  eink = ∑

m = -∞

∞
  2πδ(k - 2πm) -∞  < k < ∞ .     (13.2) 

 
Consider this finite version of the sum appearing on the left side of (13.2). We add and subtract 1 to 
obtain the sum as the these three terms,  
 

 ∑
n = -N

N
   eink = (1 + eik + ei2k + ... + eiNk) + (1 +e-ik + e-i2k + ... + e-iNk)   -   1 .   (A.26) 

 
The following is the standard formula for summing N terms of a geometric series,  
 
 1 + x + x2 + ... + xN =  (1 - xN+1)/(1-x),        (A.27)  
 
Using this formula first for x = eik and then for x = e-ik, we may write (A.26) as 
 

 ∑
n = -N

N
   eink  =  (1 - eik(N+1))/(1-eik)  +  (1 - e-ik(N+1))/(1-e-ik) - 1    (A.28)  

 
In the first term multiply top and bottom by e-ik/2 to get 
 
 first term =  (e-ik/2 - eik(N+1/2))/ ( e-ik/2- eik/2)   =  (e-ik/2 - eik(N+1/2)) / [-2isin(k/2)]  . 
 
Since the second term is the complex conjugate of the first, we get 
 
 second term =   (eik/2 - e-ik(N+1/2)) / [2isin(k/2)]   
 
Therefore 
 

 ∑
n = -N

N
   eink    =  second term + first term - 1 

 
  =  [ eik/2 - e-ik(N+1/2)  – e-ik/2 + eik(N+1/2)] / [2isin(k/2)]  - 1 
 
  =  [ 2i sin(k/2) + 2isin[k(N+1)/2] ] / [2isin(k/2)]  - 1 
 
  =  [sin(k/2) + sin[k(N+1)/2] ] / [sin(k/2)]  - 1 
 
  = sin[k(N+1)/2] / sin(k/2)  // see also Gradshteyn and Ryzhik, p 37, 1.342.2 
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and we arrive at this result (valid for any positive integer N):   
 

 ∑
n = -N

N
   eink   = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }        (A.29)  

 
From (A.15) we recognize {...} in (A.29) as δ5(k,N), so (A.29) says 
 

 ∑
n = -N

N
   eink   =  2π δ5(k,N) .        (A.30) 

 
We have thus derived equation (13.3).   
 We then take the limit N→∞ of both sides of this equation. The right side is given by (A.19) so we 
get 
 

 ∑
n = -∞

∞
   eink   = ∑

m = -∞

∞
  2πδ(k - 2πm)   -∞  < k < ∞    (A.31) 

 
and we have derived (13.2) as promised. Both sides are visibly periodic with period 2π.  
  
(d) Undoing the limit N→ ∞ :  the meaning of δ(0)  
 
Go back now to (A.29) and evaluate both sides at k = 0: 
 

 ∑
n = -N

N
   1   = 2π limk→0{  

sin[(N+1/2)k]
 2π sin(k/2)   =  limk→0{  

sin[(N+1/2)k]
 (k/2)  }   (A.32) 

 
  =  (2N+1) limk→0 sinc[ (N+1/2)k]  = (2N+1).  
 
But this is exactly the sum shown on the left, so we find that our k = 0 limit of (A.29) happily says 
 
 (2N+1)   =   (2N+1) .  
 
Taking the limit N→ ∞ of (A.30) and then the limit k → 0 we find that 
 

 ∑
n = -∞

∞
  1   = [ 2πδ(0)] .         (A.33) 

 
We noted earlier that δ(0) is model dependent and for this model δ5 we get δ(0) = +∞. There are times 
when we want to "undo the limit"  N→∞, to get 
 

 ∑
n = -N

N
   1  =  [ 2πδ(0)]undone  =  (2N+1) .       (A.34) 
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In this "undoing" we have to be careful not to use the delta function property δ(x/a) = a δ(x) since this is 
not valid in the "pre-limit".  
 
Example 1 
 
When we deal with pulse trains, we will be adding exponentials of the form exp(inωT1). From (A.31) we 
therefore have,  
 

 ∑
n = -∞

∞
   einωT1 = ∑

m = -∞

∞
  2π δ(ωT1- 2πm) .         (A.35) 

 
If we evaluate the above formula at ω = 0, we get 
 

 ∑
n = -∞

∞
   1    = ∑

m = -∞

∞
  2πδ(- 2πm)  

 
We now observe that δ(-2πm) = δm,0 δ(0), so we then get, as in (A.33),  
 

 ∑
n = -∞

∞
   1   = [ 2π δ(0)]          (A.36) 

 
We understand this as a symbolic limit. We can now undo the limit by replacing the sum endpoints with -
N and N, and replace 2πδ(0) with (2N+1), and the result is consistent. Had we rescaled the delta function 
by saying for example δ(-2πm) = (1/2π) δ(-m), we would end up with a contradiction when we tried to 
"undo the limit".  
 
Example 2 
 
Consider the square of the sum shown in Example 1,  
 

 { ∑
n = -∞

∞
   einωT1 }2   = { ∑

m = -∞

∞
  2π δ(ωT1- 2πm)  } 2      (A.37) 

 
We write the RHS using m and k for our two summation indices, then we move both summations to the 
left. Inside this double sum we get 
 
 δ(ωT1- 2πm)δ(ωT1- 2πk)  . 
 
Since the first delta function will "pin" ωT1to the values 2πm, we can replace ωT1 with 2πm in the  
second delta function and not change a thing, obtaining 
  

 δ(ωT1- 2πm)δ(2πm- 2πk) = δ(ωT1- 2πm)  δm,n δ(0)  .     (A.38) 
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The Kronecker delta δm,n now removes one of the summations, and we end up with this result: 
 

 { ∑
n = -∞

∞
   einωT1 }2    = [ 2πδ(0) ] { ∑

m = -∞

∞
  2π δ(ωT1- 2πm)  }  .    (A.39) 

 
Evaluating the above at ω = 0 yields 
 

 { ∑
n = -∞

∞
   1 }2   = [ 2πδ(0) ]  [ 2πδ(0) ]    .       (A.40) 

 
And if we now undo the limit, we get this self-consistent result,  
 

 { ∑
n = -N

N
   1 }2   = [ 2πδ(0) ]  [ 2πδ(0) ]  = (2N+1)2 .      (A.41) 

 
Once again, δ(0) is really undefined and model dependent, but for our δ5 model we use 2πδ(0) just as a 
shorthand for the limit of (2N+1) as N→ ∞. The number (2N+1) will be the number of pulses in a pulse 
train and that pulse train becomes infinitely long as N→∞. In such a limit, quantities like average energy 
per pulse remain finite.  
 
(e) The function Θ(a ≤ x ≤b) and related sums 
 
In equation (2.2) we noted that [ θ(x) is the Heaviside step function of Fig 1, sometimes written as H(x) ]  
 

  ∫
a

 b dx δ(x-y)f(x) = f(y)θ(b-y)θ(y-a)   a < b     (2.2) 

 
which we write here as 
 

  ∫
a

 b dx' δ(x'-x)f(x') = f(x)θ(b-x)θ(x-a)  a < b     (A.42) 

 
The theta functions just set the result to 0 if the delta function hit lies outside the interval (a,b).  
 
Function θ(x) is the Heaviside step function having these properties: 
 

 θ(x) = 
⎩
⎨
⎧   1        if x>0

 1/2     if x=0
 0        if x<1

 .          (A.43) 

 
These theta functions are always a bit confusing, and sometimes things are clearer using a different 
notation. Suppose we define the following new function,  
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 Θ(a ≤ x ≤ b)  ≡  Θ(a,x,b) ≡  
⎩
⎨
⎧   1        if a<x<b

 1/2     if x=a or x=b
 0        if x<a or x>b

   a < b    (A.44) 

 
The notation Θ(a ≤ x ≤b) is merely a suggestive way to write the function Θ(a,x,b).  
 
We shall now state and prove a few simple "theorem" regarding this function Θ.  
 
Fact:  Θ(a ≤ x ≤ b)  = θ(b-x)θ(x-a) a < b       (A.45) 
 
Proof. We just exhaust all cases:  
 
 x < a: θ(b-x)θ(x-a)  =  θ(b-x) * 0  = 0 
 x = a: θ(b-x)θ(x-a)  = θ(b-a)θ(a-a)  = 1 * 1/2 = 1/2 
 a < x < b: θ(b-x)θ(x-a)  = 1*1 = 1 
 x=b: θ(b-x)θ(x-a) = θ(b-b)θ(b-a) = 1/2 * 1 = 1/2 
 x > b: θ(b-x)θ(x-a)  = 0* θ(x-a) = 0 
 
Therefore, we may write (A.42) in this more friendly manner,  
 

  ∫
a

 b dx' δ(x'-x)f(x') = f(x) Θ(a ≤ x ≤ b)  a < b     (A.46) 

 
Fact:   Θ(a ≤ x+c ≤ b)  = Θ(a-c ≤ x ≤ b-c)       (A.47) 
 
Proof: The inequality notation makes this fact seem completely obvious, but we will just make sure by 
writing out both sides of the equation:  
 

 Θ(a ≤ x+c ≤ b)  ≡  Θ(a,x+c,b) ≡  
⎩
⎨
⎧   1        if a< x+c <b

 1/2     if x+c =a or x+c =b
 0        if x+c <a or x+c >b

   a < b    

 

 Θ(a-c ≤ x ≤ b-c)  ≡  Θ(a-c,x,b-c) ≡  
⎩
⎨
⎧   1        if a-c <x<b-c

 1/2     if x= a-c or x= b-c
 0        if x<a-c or x>b-c

   a-c < b-c  

 
The next fact is not quite so obvious but is very useful:  
 

Fact:  ∑
m = -∞

∞
   Θ(mα-α/2 ≤ x ≤ mα+α/2)  = 1     α > 0  -∞ < x < ∞   (A.48) 

 
Proof:  Let's write out some of the terms in this sum. Here we show terms for m = -1, 0, and 1 
 
 .... + Θ(-α-α/2 ≤ x ≤ -α+α/2)  + Θ(0-α/2 ≤ x ≤ 0+α/2)  + Θ(α-α/2 ≤ x ≤ α+α/2) + ... 
or 
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 .... + Θ ( -(3/2)α ≤ x ≤ -(1/2)α )   + Θ( -(1/2)α ≤ x ≤ (1/2)α)  + Θ((1/2)α ≤ x ≤ (3/2)α) + ... 
 
The terms of the m sum therefore partition the real x axis into intervals of width α.  If x falls within one 
of these intervals, then only the single term covering that interval contributes in the m sum and the sum is 
then 1.  If x happens to fall exactly on the boundary between two intervals, then each of those intervals 
contributes 1/2 to the sum, and the sum is again 1. For example, if x = (1/2)α, then each of the rightmost 
two terms shown above contributes 1/2. Therefore the sum is 1 for all possible values of x.  
 

Fact:  ∑
m = -∞

∞
   Θ(-α/2 ≤ x-mα ≤ +α/2)  = 1     α > 0  -∞ < x < ∞   (A.49) 

 
Proof:  Apply (A.47) to the Θ function shown in the sum :  
 
     Θ(a   ≤ x+c    ≤ b)      =   Θ(    a-c        ≤   x   ≤    b-c     ) a = -α/2,   c = -mα,   b = α/2 
 
   Θ(-α/2 ≤ x-mα ≤ α/2)   =  Θ(-α/2+mα   ≤   x   ≤   α/2+mα) 
 
Therefore, summing both sides and using (A.48),  
 

 ∑
m = -∞

∞
  Θ(-α/2 ≤ x-mα ≤ α/2)   =  ∑

m = -∞

∞
  Θ(-α/2+mα   ≤   x   ≤   α/2+mα)  = 1 

 

Corollary:  ∑
m = -∞

∞
   Θ(-α/2 ≤ x + mα ≤ +α/2)  = 1     α > 0  -∞ < x < ∞  (A.50) 

Proof:  For any summand f(m) it is clear that ∑
m = -∞

∞
  f(m) = ∑

m = -∞

∞
  f(-m), so (A.50) is the same as (A.49).  

 
(f) The product of two delta functions and more on δ(0) 
 
This subsection is a sort of coda on the subject of δ(0) where we further attempt to justify the use of δ(0) 
even though δ(0) is formally undefined. We continue the distribution discussion begun at the start of this 
Appendix.  
 
Consider a voltage pulse v(t) with a shape corresponding to one our delta function models. If this voltage 
is placed across a resistor of value R = 1, the energy in the pulse is given by 
 

 E =  ∫
-∞

 ∞ dt v2(t)  .    energy = time integral of power 

 
If we take the limit v(t)→δ(t), what happens? One is tempted to say 
 

 E =  ∫
-∞

 ∞ dt δ2(t)  =  ∫
-∞

 ∞ dt δ(t) δ(t) = δ(0)  ∫
-∞

 ∞ dt δ(t)  = δ(0) * 1  = δ(0) = +∞ 
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and one concludes (correctly) that the energy in a delta function pulse is infinite and positive. There are 
several problems with the this analysis.  
 First, we have already seen that with different δ models, we can get δ(0) to be any number we want, 
including +∞. -∞ and 0. Very embarrassing.  
 Second, the distribution <δξ2, φ> = δ(ξ)φ(ξ) is not a sensible distribution since this linear functional 
maps into a real number which is undefined at ξ = 0. In general the product of two distributions (in the 
sense we use it here) is not even defined in the realm of distribution theory, unless one or both 
distributions are regular functions. In that case we could have, for example,  
 

 < f δξ, φ > = < δξ, fφ> =   ∫
-∞

 ∞ dx δ(x-ξ)f(x)φ(x) = f(ξ)φ(ξ) =  well defined  .    

 
Some people have tried to incorporate products of singular distributions into distribution theory, but it is 
not clear how their results apply in our current context (see for example Colombeau 1990).  
 Note that there are other meanings of the product of two distributions. One is called a convolution 
product which is like f(g(x)) for functions, while the other involves multiple variables like δ(2)(r-r') = 
δ(x-x')δ(y-y'). Neither of these products involves products of symbolic functions in the same variable such 
as δ(t)δ(t).  
  
So, how might we compute the energy in a delta function voltage pulse? The only reasonable thing to do 
is to back δ(t) off to one of its models and see what happens. For example, suppose we take δ1(t,A) as 
stated in (A.2), which is the simple box model of height A and width 1/A. Then 
 

 E = limA→∞ {  ∫
-∞

 ∞ dt  [δ1(t,A)]2  } 

 
Now  [δ1(t,A)]2 is a box of width 1/A and height A2 so its area is A. Then 
 
 E = limA→∞ { A  }   = +∞   // recall δ(0) = +∞ 
 
Suppose we take our deviant delta function model (A.4) δ2(k,A) shown in Fig A.2 left.  We get 
 

 E = limA→∞ {  ∫
-∞

 ∞ dt  [δ2(t,A)]2  } 

 
Since the pulse is squared, the area under  [δ2(t,A)]2 is 3A and we then get 
 
 E = limA→∞ { 3A }  = +∞   // recall δ(0) = -∞ 
 
Finally, for the our second deviant model (A.5) δ2'(k,A) shown in Fig A.2 right we get 
 
 E = limA→∞{ A/2 } = +∞   // recall δ(0) = 0  
 
Thus, we get E = +∞ regardless of the value of δ(0) in the model.  
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Despite this discussion which shows that δ(0) is undefined, we nevertheless use δ(0) with a particular 
model in mind because it allows us to avoid dealing with specific boundaries in equations.   
 In Example 2 of the previous subsection, we saw the use of 2πδ(0) as meaning 2N+1 for a very long 
pulse train starting at -N in the distant past and ending at +N in far future. We would rather think in terms 
of an infinite pulse train and 2πδ(0), but the physical meaning is a very long pulse train and 2N+1. It is 
just a convenient notation.  
 Another common example has to do with "box normalization" which in one dimension is the model 
presented as (A.13),   
 

  ∫
-L/2

 L/2  dx eikx  =  2π  
sin(kL/2)

 πk    =  2π  δ4(k,L/2) 

 

  ∫
-L/2

 L/2  dx ei0x  =  L  =  2πδ(0) . 

 
In this case, we use 2πδ(0) to represent the length of a box which is some very large L. Rather than carry 
the large but finite L along in all equations, we can use 2πδ(0) as needed represent this long length.  
  
The conclusion here is that we can use 2πδ(0) as a notational device provided we are very careful as to the 
meaning of that device. We must always know how to undo the limit, and that implies a specific delta 
function model for a specific application.  
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Appendix B: Derivation of a Certain Identity 
 
Theorem:   For N and s both integers (N > 0) 
 

    ∑
m = 0

N-1
  e+ims(2π/N)  =  N ∑

m = -∞

∞
  δs,mN .      (B.1) 

 
This identity is used in Section 27 (b) on the Discrete Fourier Transform. 
 
To prove this relation, we shall first show that each side is periodic in s with period N, then we shall 
verify that the relation is true for s = 0,1,2...N-1. We will have then shown that the relation is true for all 
integer values of s.  
 
First, give names to the two sides of (B.1) 
 

 f(s)  ≡  ∑
m = 0

N-1
  e+ims(2π/N)   g(s) ≡ N ∑

m = -∞

∞
  δs,mN . 

 
Function f(s) is periodic as claimed because 
 

 f(s+kN)  = ∑
m = 0

N-1
  e+im(s+kN)(2π/N)  = ∑

m = 0

N-1
  e+ims(2π/N) eimkN(2π/N)  = ∑

m = 0

N-1
  e+ims(2π/N)  = f(s) 

  
Function  g(s) is periodic as claimed because  ( m' ≡ m-k ) 
 

 g(s+kN) ≡ N ∑
m = -∞

∞
  δs+kN,mN  =  N ∑

m = -∞

∞
  δs,(m-k)N  = N ∑

m' = -∞

∞
  δs,(m')N  = g(s) 

 
Thus, each side of (B.1) is periodic in s with period N.  
 
Now, consider the proposed equality:  
 

 ∑
m = 0

N-1
  e+ims(2π/N)  =  N ∑

m = -∞

∞
  δs,mN .       (B.1) 

 
For s = 0, the above claims 
 

 ∑
m = 0

N-1
  1  = N ∑

m = -∞

∞
  δ0,mN  = N  δ0,0 = N .       

 
But this is true since the left side sum is obviously N as well.  Thus, (B.4) is valid for s = 0.  
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For s = 1,2,3....N-1, we claim that on the left side of (B.1) we are adding N equally spaced points around a 
circle in the complex phasor plane, and therefore the sum on the left side is zero. Meanwhile, the right 
side is also zero because for any of these s values, there is no integer m such that s = mN hence δs,mN = 0. 
Thus, if one accepts the circle argument, one finds that for all these s values both sides of (B.1) vanish.  
 
To avoid the circle construction, we can simply compute the left side of (B.1) using the formula 
 

 ∑
m = 0

N-1
  e+ims(2π/N)  =   1 + x + x2  + ... + xN-1   = (xN- 1)/(x-1)     with x = e+is(2π/N) 

 
For s = 1,2,3....N-1 the phasor x = e+ims(2π/N) ≠ 1, so denominator (x-1) ≠ 0. Meanwhile,  
 
 xN = e+is(2π/N)N = e+is2π  = 1  for any integer s 
 
Therefore numerator (xN- 1) = 0 and the sum thus vanishes for these values of s.  
 
Thus we have shown that (B.1) is valid for  s = 0,1,2...N-1, and since both sides of (B.1) are periodic in s 
with period N, it must be that (B.1) is valid for all integers s.  
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Appendix C: The Fourier Transform and its relation to the Hilbert Transform   
  
In this Appendix we refer to the Fourier Integral Transform simply as the Fourier transform. We develop 
more "facts" about Fourier transforms, including new notations, and present a set of closely related 
examples. The pf pseudofunction and principal part integrals are introduced in the context of what we call 
"the pole avoidance rule". The connection between the Fourier and Hilbert transforms is then used as an 
exercise in applying the developed methods.  
 
(a) Fourier Transform Notations 
 
Recall from Section 1 the statement of the Fourier transform, derived in Section 2,  
 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform    (1.1) 

 x(t) = (1/2π)  ∫
-∞

 ∞ dω X(ω) e+iωt  expansion = inverse transform   (1.2) 

 
We used lower case for a function of time like x(t), and upper case for the spectral components X(ω). 
Although convenient in many situations, this notation is a bit limiting for more general use, so we replace 
X(ω) with x^(ω). The above can then be written as,  
 

 x^(ω) =  k ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform  

 x(t) = (1/2πk)  ∫
-∞

 ∞ dω x^(ω) e+iωt  expansion = inverse transform 

 
Here we have added an arbitrary constant k to allow for other scalings of the Fourier Transform. The 
projection has k, the inversion has k-1 as shown. For us, k = 1, but other sources might have k = (2π)-1 or 
perhaps k = 1/ 2π  to make the two equations symmetric.  

 
The first line defines the Fourier transform of some arbitrary function x(t), but the second line acts only 
on a function x^(ω) which is already a Fourier transform. We would like to have the second line act on an 
arbitrary function as well. To do this, we replace x^(ω) by f(ω) and treat the second line as an operation 
one applies to some arbitrary function f(ω),  
 

 f^-1(t) = (1/2πk)  ∫
-∞

 ∞ dω f(ω) e+iωt  inverse transform 

 
This then defines an operation performed on f(ω) to generate f^-1(t) which is, by definition,  the inverse 
Fourier transform of f(ω). So changing the dummy integration variable names both to u we get 
 

 f^(ω) = k ∫
-∞

 ∞ du f(u) e-iωu   Fourier transform of f(u)    

 f^-1(t) = (1/2πk)  ∫
-∞

 ∞ du f(u) e+iut  inverse Fourier transform of f(u)   (C.1) 
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We think of both these equations as defining certain operations on an arbitrary function f(u). The function 
f(u) must be in the class of functions described in Section 1(b) in order that the integral converge to a 
function, though the class rules may be violated if one allows the transform and/or its inverse to be a 
distribution.  
 From the first line of (C.1) we find that 
 

 f^(-ω) = k ∫
-∞

 ∞ du f(u) e+iωu  = k ∫
-∞

 ∞ du f(-u) e-iωu  = [f(-u)]^(ω) 

 
from which we obtain 
 
Fact 0:   [f(-u)]^(-ω)  = f^(ω)         (C.2) 
 
From the second line of (C.1) we find 
 

 f^-1(-ω)  = (1/2πk)  ∫
-∞

 ∞ du f(u) e-iuω   = (1/2πk2)  k ∫
-∞

 ∞ du f(u) e-iuω   = (1/2πk2) f^(ω) . 

 
We are dealing here with three distinct functions:  f(u), f^(u)  and f^-1(u), but we just showed that 
 
Fact 1:   f^-1(u)  = (1/2πk2) f^(-u)       (C.3) 
 
so two of these three functions have a simple relationship.  
 Notice in Fact 1 that one cannot simply suppress the argument u on both sides since u appears on the 
left and –u appears on the right. When an argument is the same on both sides of an equation, or when an 
argument is not needed, it can be suppressed to reduce clutter.  
 
The fact that the Fourier transform is valid means that the inverse Fourier transform of the Fourier 
transform of a function is that function. Similarly, the Fourier transform of the inverse Fourier transform 
of a function is that function. This was clear in (1.1) and (1.2) and in the new notation this becomes 
 
Fact 2:  [f^(ω)]^-1(t)  = [f^-1(ω)]^(t)  = f(t)  
     or 
   [f^]^-1  = [f^-1]^  = f        (C.4) 
 
This provides an example of suppressing arguments to declutter a simple equation. Notice that the 
constant k does not appear in Fact 2. Consider then this statement of Fact 2,  
 
 (f^)^-1(t)  = f(t) 
 
Fact 1 applied to f→f^ says 
 
 (f^)^-1(t)  = (1/2πk2) (f^)^(-t)  
 
so that 
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 (1/2πk2) (f^)^(-t) = f(t)  
or 
 (f^)^(t)  = 2πk2 f(-t) 
 
which then gives 
 
Fact 3:  f^^(t) = 2πk2 f(-t)        (C.5) 
 
   FT of f(t) = f^(t) ⇔ FT of  f^(t) = 2πk2f(-t) 
 
The first line says that applying the Fourier transform twice to a function gives 2πk2 times the function of 
negated argument (see Stakgold Vol II (5.55) with k = 1). Nothing new is happening here, it is all just 
notation. When k = 1/ 2π  the factor 2πk2 = 1 on the second line which is a strong motivation for that 
scaling, but we had other motivations for k = 1 as outlined in Section 5.  
 The three Facts just stated are independent of the sign of the phase in the Fourier transform definition. 
  
Operator Notation. An alternative notation similar to that used for Laplace transforms is the following:  
 
 f^(ω) = F[f(u),ω]  =  F[f,ω] = F f(ω) 
or 
 f^  = F f           (C.6) 
 
and for the inverse Fourier transform,  
 
 f^-1(t) = F-1[f(u),t]  = F-1[f,t] = F-1f(t) 
or 
 f^-1 = F-1f  .           (C.7) 
 
The idea here is that F f = g is a new function obtained by acting upon function f with the Fourier 
transform operator F. Similarly F-1f = h is a new function obtained by acting upon function f with the 
inverse Fourier transform operator F-1. The three facts stated above can then be translated into this new 
notation. 
 
Fact 1:     f^-1(u)  = (1/2πk2) f^(-u)  → F-1[f(s),u]  = (1/2πk2) F[f(s),-u]   
        F-1[f,u]      = (1/2πk2) F[f,-u]   
        F-1f(u)       = (1/2πk2) F f(-u)    (C.3) 
 
Fact 2:   [f^(ω)]^-1(t)  = [f^-1(ω)]^(t)  = f(t)  → F-1[F[f(ω),s],t]  =  F[F-1[f(ω),s],t]  = f(t)  
    [f^]^-1  = [f^-1]^  = f   → F-1F f  =  FF-1f  = f   (C.4) 
 
Fact 3:   f^^(t) = 2πk f(-t)   → F[F[f(ω),s],t] =  2πk2f(-t)  
        F[F[f,s],t]      =  2πk2f(-t) 
        F2f(t)        =    2πk2f(-t)  (C.5) 
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The last line of Fact 2 has a particular appeal, since F-1F  = FF-1  = 1 , the identity operator.  
 
(b) Principal Value Integrals and the Tick Notation 
 
Consider the following integral, 
 

  ∫
-∞

 ∞ dx  
1

x-a  f(x) .      

 
If f(x) is non-vanishing at x = a, and if a is real, this integral runs right through a pole at x = a. If a were 
complex, then the integral would run above or below the pole and one would be less concerned. If the 
intention really is to run the integration right through the pole, it is useful to make that fact very clear 
using some kind of notation. One defines the notion of "going through the pole" as the following limiting 
operation,  
 

  ∫
-∞

 ∞ dx  
1

x-a  f(x)   =  limε→0 [ ∫
-∞

 a-ε dx +  ∫
a+ε

 ∞  dx]   
1

x-a  f(x)   ≡  ∫-- ∞
-∞ dx  

1
x-a  f(x) .  (C.8) 

 
Such an integration is referred to as a Cauchy Principal Value (or Principal Part) Integral.  We defer to 
section (d) below the pf notation which formalizes the above definition as 
 

  ∫
-∞

 ∞ dx pf( 
1

x-a ) f(x)   ≡  ∫-- ∞
-∞ dx  

1
x-a  f(x)  ≡  limε→0 [ ∫

-∞

 a-ε dx +  ∫
a+ε

 ∞  dx]   
1

x-a  f(x) 

 
As an example, consider this case where a = 0 and f(x) = 1,  
 

   ∫
-2

 2 dx  
1
x  =  0 .           

 
Although 1/x "blows up" at x = 0, this integral as defined above is exactly 0. All contributions to this 
integral are real, since 1/x is real, so the integral has no imaginary part. A simple argument for result zero 
is that the integration range is even while the integrand is odd under x → -x, so contributions from the left 
side of x=0 exactly cancel those from the right side of x=0. If the integrand contained some f(x) which 
was even under x → -x, the same argument would apply and the integral would be 0, but for general f(x) 
the integral would not be 0.  
 

Comment: If one tries to evaluate the integral using ln(x), one gets a pre-limit result ln[
a-ε
a+ε ] + ln[

2
-2 ]. 

After the limit, the first term gives ln[1] = 0 while the second term seems to give ln[-1] which one thinks 
of as ±iπ and we get a contradictory result that the real integral of a real integrand has an imaginary part. 
The problem is that this is a singular integral and the normal rules do not apply. The ±iπ reflects the fact 
that the integral is trying to avoid the pole by going above it or below it, whereas we really want to go 
right through it. Stakgold Vol. I Exercise 1.23 shows how this contradiction is resolved using a redefined 
log function, and the subject reappears below in our Pole Avoidance Rule discussion.  
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Here then are two notations used for integrals intended to run through poles,  
 

 ∫-- ∞
-∞ dx  

1
x-a  f(x)   ≡  P.V.  ∫

-∞

 ∞ dx  
1

x-a  f(x)   ≡  limε→0 [ ∫
-∞

 a-ε dx +  ∫
a+ε

 ∞  dx]   
1

x-a  f(x)  . (C.9) 

 
The tick mark on the integration symbol suggests the idea of running through the pole as the ε limit from 
the two sides, but is not easy to typeset, so one often sees the letters P.V, PV, p.v., v.p. , P or some other 
set of letters to indicate the principle part integration. We shall use the tick mark notation. Our example is 
then 
 

 ∫-- 2
-2 dx  

1
x  =  0 .          (C.10) 

 
In the next several sections we shall examine some closely related examples of Fourier transforms, some 
of which require use of the Principal Value integral. The examples are later summarized in section (g).  
 
(c) Example:  f(u) = 1/u 
 
Projection/Transform:   
 
Let f(u) = 1/u.  Using the regular Fourier transform requires that the integral go right through the pole, so 
we have 
 

 (1/u)^(ω)  =  k ∫
-∞

 ∞ du(1/u) e-iωu   = k  ∫-- ∞
-∞ du(1/u) e-iωu .    (C.11) 

 
For ω ≠ 0 we can evaluate the integral this way,  
 

 ∫-- ∞
-∞ du(1/u) e-iωu   =  ∫-- ∞

-∞ du(1/u) [-isin(ωu)] = (-i) 2 ∫
0

 ∞ du sin(ωu)/u  

  = (-i) 2 sign(ω) { ∫
0

 ∞ du sin(|ω|u)/u }   = (-i) 2 sign(ω) { ∫
0

 ∞ dx sinc(x) }   // x = |ω|u 

 
  = (-i) 2 sign(ω)  { π/2 } 
   
  = -iπ sign(ω)  .          (C.12) 
 
In the first step cos(ωu) was discarded since (1/u) cos(ωu) is an odd function of u. Once that is done, since 
sinc(x) = 1 at x = 0, there is no longer a pole at u = 0 so we have just a regular integral. The residual 
integral is half of (10.3).  

 If ω = 0, the integral is just ∫-- ∞
-∞ du(1/u) = 0 based on the discussion of the previous section. One can 

combine these results by writing 
 

  ∫-- ∞
-∞ du(1/u) e-iωu  =  -iπ sgn(ω)        (C.13) 
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where  

 sgn(ω) ≡ 
⎩
⎨
⎧   +1   ω > 0

   0   ω = 0
 -1    ω < 0

   // sometimes called signum(ω)    (C.14) 

 
This sgn(ω) function is related to the Heaviside step function by 
 
 sgn(ω) = 2θ(ω) – 1          (C.15) 
 
where in particular sgn(0) = 2θ(0) – 1 = 2(1/2)-1 = 0.  
 
Our conclusion is that the Fourier transform of 1/u is given by 
 
 (1/u)^(ω) = -iπk sgn(ω) .         (C.16) 
 
If we treat sgn(ω) like any other function, we can suppress the ω argument to write 
 
 (1/u)^ = -iπk sgn   .          (C.17) 
 
In the general case of f^(u) → f^ we could suppress the u, but once the function is stated (such as 1/u), it 
is difficult to suppress the u and still know what the function is. Note that the u in 1/u is just a dummy 
variable and we could just as well write 
 
 (1/t)^(ω) = -iπk sgn(ω) 
 (1/t)^ = -iπk sgn  .          (C.18) 
 
Inversion/Recovery:  
 
How does the recovery work?  
 

  (1/2πk)  ∫
-∞

 ∞ dω (1/t)^(ω) e+iωt  =   (1/2πk)  ∫
-∞

 ∞ dω [-iπksgn(ω)] e+iωt 

 

 = (1/2π)(-iπ)  ∫
-∞

 ∞ dω sgn(ω) e+iωt  =  (-i/2)  ∫
-∞

 ∞ dω sgn(ω) [i sin(ωt] 

 

 =  (-i/2) i  2  ∫0
 ∞ dω sin(ωt)  =  ∫0

 ∞ dω sin(ωt)  = -(1/t)cos(ωt)|∞0  =  -(1/t) [ cos(∞t) - cos(0)] 

 
 = (1/t)           (C.19) 
 
The distributional trick is to set cos(∞t) = 0. In more detail,  
 

  ∫0
 ∞ dω sin(ωt)  =  limε→0 [ ∫0

 ∞ dω sin(ωt) e-εω ] = limε→0 
t

t2+ε2   =  
1
t   .  (C.20) 
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Interchange:   
 
We have just shown that 
 
 (1/u)^(ω)  = -iπk sgn(ω) . 
 
We can Fourier transform both sides to get 
 
 [(1/u)^(ω)]^(t)  = -iπk [sgn(ω)]^(t) 
 
so that 
 
 [sgn(ω)]^(t)  = (1/-iπk)  [(1/u)^(ω)]^(t) . 
 
But according to Fact 3,  
 
 [(1/u)^(ω)]^(t) = [(1/u)^]^(t)  = (1/u)^^(t) = 2πk2 (1/-t) = -2πk2/t  .  
 
Therefore 
 
 [sgn(ω)]^(t)   = (1/-iπk) (-2πk2/t) = 2k/(it)  = -2ik(1/t) .     (C.21) 
 
Thus we have learned the Fourier transform of the function sgn(ω). We could have computed this directly 
as follows:  
 

 [sgn(ω)]^(t)   =  k ∫
-∞

 ∞ du sgn(u) e-itu  = k ∫
-∞

 ∞ du sgn(u) [-i sin(tu)]  = (-i) 2k  ∫
0

 ∞ du sin(tu) 

 
  = (-2ik)(-1/t)cos(tu)|∞0 = (2ik/t)(0 - 1) = -2ik(1/t) . 
 
(d) The Pole Avoidance Rule of Complex Integration 
 
The upper picture on the left shows a real-axis integration contour in the ω-plane which passes just below 
a pole located at ω = +iε. We are interested in what happens as ε → 0. The upper picture on the right 
shows the contour passing just above a pole at ω = -iε and we have a similar interest there as ε → 0. The 
lower contour pictures show a certain contour deformation, and the pair of equations under each pair of 
drawings will be discussed below.  
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 ∫

-∞

 ∞ dω f(ω) 
1

ω – iε  = ∫-- ∞
-∞ dω f(ω) (1/ω) + iπ f(0)     ∫

-∞

 ∞ dω f(ω) 
1

ω + iε = ∫-- ∞
-∞ dω f(ω)(1/ω) – iπ f(0)       

                     
1

ω – iε  =                    pf(1/ω) + iπδ(ω)                          
1

ω + iε  =                 pf(1/ω) – iπδ(ω)       

 
             Fig C.1 
        
We assume that f(ω) is such that the integrals converge and f(ω) is well defined at ω = 0. We are 
interested only in the limit ε→ 0.  
 
Left Side. Consider the top left red arrow contour. If we try to take ε→0, the pole moves down and hits 
the contour, which is a poorly defined concept in complex integration. To prevent this from happening, 
we first make a tiny semi-circular deformation of the contour so it goes around ω = 0. One is certainly 
allowed to deform a contour and not change an integral, as long as the deformation hits no singularities. 
After doing this "for free" deformation, we then let the ε→0 so the pole moves down to the real axis. If 
we now evaluate the integral, we get two famous pieces:  The first piece is the principle value integral 
discussed in section (b) above, namely,   
 

 ∫-- ∞
-∞ dω f(ω) (1/ω)  ≡  limα→0 [  ∫

-∞

 -α  +  ∫
α

 ∞  ] dω f(ω) (1/ω) . 

 
The second piece is a half-circle counterclockwise contour around the pole which gives one half the pole 
residue which result is then (1/2) 2πi f(0)  = iπf(0). In general, if a contour goes some percentage around a 
pole, it picks up that percentage of the reside, which we now demonstrate, letting ω = Reiθ ,  
 

 ∫dω
ω    =  ∫Reiθidθ

 Reiθ    =  i  ∫
θ1

 θ2 dθ  = i(θ2-θ1) .   // partial residue rule 

 
If we go half way around the pole, then i(θ2-θ1) = iπ.  So we have now derived the top left equation in Fig 
C.1.  
 Recall now from Appendix A that a distributional equation is one which gains its meaning when 
placed inside an integral. So consider 
 

  ∫
-∞

 ∞ dω f(ω) 
1

ω – iε   =   ∫
-∞

 ∞ dω f(ω) [  pf(1/ω) + iπδ(ω) ]  =  ∫
-∞

 ∞ dω f(ω) pf(1/ω)  + iπ f(0) . 
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Here both pf(1/ω) and δ(ω) are symbolic functions as discussed in Appendix A. The meaning of δ(ω) 
seems clear (sifting property) while the meaning of pf(1/ω) is precisely this:  
 

  ∫
-∞

 ∞ dω f(ω) pf(1/ω)  ≡  ∫-- ∞
-∞ dω f(ω) (1/ω) . 

 
The letters pf stand for pseudofunction. Officially f(ω) should be a distribution theory "test function", but 
we just take it to be any reasonable function as described above. So we have now derived both equations 
on the left of Fig C.1.  
 
Right Side. This is the same idea, but the required contour deformation is different, and since the 
semicircle then goes clockwise around the pole, we pick up minus half the residue which is – iπf(0). Now 
both equations on the right are derived. We have then proven the following distributional equation:  
 
The Pole Avoidance Rule: 
 

 limε→0 
1

ω ∓ iε  = pf(1/ω) ± iπδ(ω)        (C.22) 

 
Notice that this rule has no connection with phase sign conventions of the Fourier transform. It really has 
nothing at all to do with the Fourier transform in fact.  This "rule" seems to have no official name, so we 
have made one up. For more discussion of this subject see Stakgold Vol. I page 50 (1.27) and previous 
pages.  
 
(e) Example: f(u) = 1/(u±iε) 
 
Here we always imply the limit ε→ 0.  
 
Projection/Transform:  
 
Using the Pole Avoidance Rule (C.21) above, we may compute the Fourier transform of this f(u) as 
follows:  
 

 (
1

u±iε )^(ω)  = k  ∫
-∞

 ∞ du
1

u±iε  e
-iωu   = k  ∫-- ∞

-∞ du(1/u) e-iωu  ∓ iπk 

 
The principal value integral was found in (C.13) to be  -iπ sgn(ω) , so we find that 
 

  (
1

u±iε )^(ω) = –iπk sgn(ω) ∓ iπk  =  -iπk (sgn(ω) ± 1) . 

 
Assume first the upper signs,  
 

 (
1

u+iε )^(ω) = –iπk sgn(ω) – iπk  =  -iπk (sgn(ω) + 1) 
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If ω > 0, the result is -2πik, and if ω < 0 the result is 0. So 
 

 (
1

u+iε )^(ω) = -2πikθ(ω) . 

 
Now assume the lower signs 
 

 (
1

u-iε )^(ω) = –iπk sgn(ω) + iπk  =  -iπk (sgn(ω) - 1) 

 
If ω > 0, the result is 0.  If ω < 0, the result is +2πik.  So 
 

 (
1

u-iε )^(ω) = 2πikθ(-ω) . 

 

Combining these results we get the Fourier transform of 
1

u±iε  :    

 

 (
1

u±iε )^(ω)  = ∓ 2πik θ(±ω)   .        (C.23) 

 
Inversion/Recovery:   
 

 (1/2πk)  ∫
-∞

 ∞ dω (
1

u±iε )^(ω) e+iωt  = (1/2π)  ∫
-∞

 ∞ dω [∓2πi θ(±ω)] e+iωt 

 

  = (1/2π)(∓2πi)  ∫
-∞

 ∞ dω θ(±ω) e+iωt  =  (∓ i)  ∫
-∞

 ∞ dω θ(±ω) e+iωt   

 
First take the upper sign 
 

  = (– i) ∫
0

 ∞ dω e+iωt  . 

 
If t has a small positive imaginary part, the integral converges to (-1/it) to give 
 

  =  (– i) (-1/it) = 1/t 
 
but we write t as t+iε to show that it has this small positive imaginary part, so the result is 
 

 (1/2π)  ∫
-∞

 ∞ dω (
1

u+iε )^(ω) e+iωt = 
1

t+iε  

 
as desired. Now we look at the lower sign 
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  (+i) ∫
-∞

 0  dω e+iωt  = (+i)  ∫
0

 ∞  dω e-iωt 

 
If t has a small negative imaginary part, the integral converges to (+1/it) to give 
 

  = (+i) (+1/it)  = 1/t  = 
1

t-iε  

 
which is again the desired result.  
 
Interchange:   
 
We have just shown that 
 

 (
1

u±iε )^(ω)  = ∓ 2πik θ(±ω) 

 
where it is understood that ε → 0 on the left side, and either set of signs is valid.  
 
We can Fourier transform both sides to get 
 

 [(
1

u±iε )^(ω)]^(t)  = ∓ 2πik [θ(±ω)]^(t) . 

 
But according to Fact 3,  
 

 [(
1

u±iε )^(ω)]^(t)   = [(
1

u±iε )^]^(t)  = (
1

u±iε )^^(t) = 2πk2 
1

-t±iε .   

 
Therefore 
 

 [θ(±ω)]^(t)  = (∓ 2πik)-1 2πk2 
1

-t±iε = 
k
∓i   

1
-t±iε    = 

k
±it+ε   

  = ±ik 
1

-t±iε  = ±ik [ pf(-1/t) ∓ iπδ(-t) ]  = ±ik [ -pf(1/t) ∓ iπδ(t) ]   =  ∓ i k pf(1/t) + π k δ(t) 

 
and so we learn the Fourier transform of the Heaviside step function with either sign argument. The result 
with the + sign is verified immediately below. A more standard naming of the arguments yields 
 

 [θ(±t)]^(ω)  = ±i k 
1

-ω±iε   = ∓ i k pf(1/ω) + π k δ(ω)  = k pf( 
1

±iω ) + π k δ(ω)   .  (C.24) 
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(f) Example: f(u) = θ(u) using the Generalized Fourier Transform 
 
We include this example only because it is related to the previous examples.  
 
Projection/Transform:  
 
From the first line of (C.1) the projection (Fourier transform) is given by 
 

 [θ(u)]^(ω) = k  ∫
-∞

 ∞ du θ(u) e-iωu  =  k  ∫
0

 ∞ du e-iωu  . 

 
The generalized Fourier transform was defined in Section 6. Recall that the recovery contour in the 
inversion formula passes below all singularities of f(u), so for this example that contour runs just below 
the real axis so as to put the pole at u = 0 above the contour. Thus, we are really interested in the 
projection evaluated at ω-iε, so we then have a convergent integral,  
 

 [θ(u)]^(ω-iε)  = k  ∫
0

 ∞ du e-i(ω-iε)u  = k  ∫
0

 ∞ du e-(iω+ε)u  = k  
1

iω+ε . 

 
Taking the limit ε→ 0 we obtain the generalized Fourier transform of θ(u) valid for general complex ω,  
 

 [θ(u)]^(ω) = 
k
iω           (C.25) 

 
Inversion/Recovery:  
 
We now evaluate the generalized Fourier inversion formula using the above projection,  
 

  (1/2πk)  ∫
-∞-iε

 ∞-iε dω f(ω) e+iωt  =  (1/2πk)  ∫
-∞-iε

 ∞-iε dω 
k
iω e+iωt   

 

  = (1/2πi)  ∫
-∞-iε

 ∞-iε dω 
1
ω e+iωt  =  θ(t) as explained below :  

 
For t < 0, we close the contour down and pick up nothing giving 0.  
For t > 0, we close the contour up and pick up the full pole residue to get (1/2πi)2πi= 1. 
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(g) Summary of Examples 
 
Our convention uses k = 1, but see (C.1) for other conventions.  
 
 Function/Distribution  Fourier transform   Comment 
    x(t)    X(ω)      main text notation (k=1) 
    f(t)     fh(ω)     Appendix C notation 
    1/t       -iπk sgn(ω)    (C.16)  

    sgn(t)    
2k
iω      (C.21)  

limε→0 
1

t±iε = pf(1/t) ∓ iπδ(t)  ∓ 2πik θ(±ω)    (C.23) 

 θ(±t)     k limε→0
1

±iω+ε  = k pf( 
1

±iω ) + πk δ(ω)  (C.24)  

 θ(t)     
k
iω    (generalized FT)   (C.25) 

 
Comment:  Looking back at (C.11) in light of the pf notation, the formally correct version of (C.11) 
would be this 
 

 [pf(1/u)]^(ω)  =  k ∫
-∞

 ∞ du pf(1/u) e-iωu   = k  ∫-- ∞
-∞ du(1/u) e-iωu    (C.11) 

 
and then one would  have this version of (C.18).  
 
 [pf(1/t)]^(ω)   =  -iπk sgn(ω)   .        (C.18) 
 
Most tables of Fourier transforms omit the pf formality since things are clear without such notation.   
 
(h) The Hilbert Transform and its relation to the Fourier Transform 
 
The Hilbert Transform is defined as follows 
 

 fh(t) ≡  (1/π) ∫-- ∞
-∞ dω 

f(ω)
t-ω    ≡ H[ f(x),t]  = H[f,t]  .      (C.26) 

 
Again we show several different notations, though we shall mainly use fh(t). Changing the integration 
variable from ω to t' gives 
 

 fh(t) =  ∫-- ∞
-∞ dt' 

(1/π)
t-t'   f(t')   =  ∫

-∞

 ∞  dt'  pf(
(1/π)
t-t'  ) f(t')      (C.27) 

 
where we use the pf symbolic function introduced earlier. We recognize this as having the usual 
convolution form (3.1),  
 



  Appendix C: The Fourier Transform 

  261 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t') sometimes written a = b * c    (3.1) 

 
where a = b * c becomes,  
 

 fh  = pf( 
1
πt ) * f   .          (C.28) 

 
The Convolution Theorem was stated in (3.6) 
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t')  ⇔ A(ω) = B(ω) C(ω)    (3.6) 

 
or in our new notation, where for example a^(ω) = kA(ω),  
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t')  ⇔ a^(ω) = k-1 b^(ω) c^(ω)  .   (3.6) 

 
Therefore we obtain this diagonalized form of (C.27) in ω-space,  
 

 [fh]^(ω) = k-1 ( 
1
πt  )^(ω)  f^(ω)        (C.29) 

 
But from (C.16) we know that  (see Comment at the end of section g above)  
 

 ( 
1
πt  )^(ω)  = -i k sgn(ω)         (C.30) 

 
Therefore (C.29) becomes (the scaling factor is now gone since both sides are Fourier transforms),  
 
 (fh)^(ω) = -i sgn(ω) f^(ω) .        (C.31) 
 
This well-known result relates the Fourier transform of the Hilbert transform of a function directly to the 
Fourier transform of that function. We now make immediate use of this equation.  
 Since (C.31) can be applied to any function f (always assuming the Hilbert integral converges), we 
apply it first to g,  
 
 [(g)h]^(ω) = -i sgn(ω) (g)^(ω)        (C.32) 
    
and then we set g = fh to get 
 
 [(fh)h]^(ω) = -i sgn(ω) (fh)^(ω) .       (C.33) 
 
Installing (C.31) into the right side gives 
 
 [fhh]^(ω) = -i sgn(ω) [ -i sgn(ω) f^(ω)]  = - f^(ω).       (C.34) 
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Applying the inverse Fourier transform to both sides then gives 
 
 fhh(t)  = -f(t) 
or 
 fhh = -f             (C.35) 
 
or in operator notation,  
 
 H H f = -f .          (C.36) 
 
This says that application of the Hilbert transform twice to a function gives that function preceded by a 
minus sign (compare to Fact 3). We can apply H-1 to both sides to get 
 
 H-1 f  = - H f          (C.37) 
      
and, in so doing, we have discovered the formula for the inverse Hilbert transform,  
 

 H-1f(t)  =  - (1/π) ∫-- ∞
-∞ dω 

f(ω)
t-ω     ≡  fh-1(t)  .       (C.38) 

 
We can then apply this last equation to fh instead of f to get 
 

 H-1fh(t) =   - (1/π) ∫-- ∞
-∞ dω 

fh(ω)
t-ω   = (fh)h-1(t)  = f(t)     (C.39) 

 
which gives us this Hilbert transform pair (in which the two members differ only by a sign),  
 

 fh(t) =    (1/π) ∫-- ∞
-∞ dω 

f(ω)
t-ω    // projection = transform 

 f(t)  =  - (1/π) ∫-- ∞
-∞ dω 

fh(ω)
t-ω    // inversion = recovery .    (C.40) 

  
We now make these replacements  ω→ω', f → X, fh → Xh,  t→ω  to get 
 

 Xh(ω) =    (1/π) ∫-- ∞
-∞ dω' 

X(ω')
ω-ω'    // projection = transform 

 X(ω)  =  - (1/π) ∫-- ∞
-∞ dω' 

Xh(ω')
ω-ω'    // inversion = recovery    (C.41) 

 
and this is a more familiar statement of the Hilbert transform pair. We have proved that this transform is 
valid by making use of its connection to the Fourier transform shown in (C.31).  
  
About 13 pages of Hilbert transforms appear in Erdélyi ET2.  
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Example 1:  Compute the Hilbert Transform of f(ω) = eiβω  :  
 

 fh(t) =   -(1/π) ∫-- ∞
-∞ dω 

1
ω-t  e

iβω  =   -(1/π) ∫-- ∞
-∞ dω' 

1
ω'  e

iβ(ω'+t)  

 

    =  -(1/π)  eiβt  ∫-- ∞
-∞ dω' 

1
ω'  e

iβω'  =  -(1/π)  eiβt  ∫-- ∞
-∞ dω' 

1
ω'  (i) sin(βω')    // x = βω' 

 

  = -(i/π)  eiβt  2 sgn(β)  ∫
0

 ∞ dx sinc(x) =  -(i/π)  eiβt  2  sgn(β) { π/2 }  // as in (C.12) 

 
  = -i sgn(β) eiβt 
 
Therefore 
 
 f(ω) = eiβω  ⇔ fh(t) = -i sgn(β)eiβt      (C.42) 
 
or in the notation of the main text 
 
 X(ω) = eiβω  ⇔ Xh(ω) = -i sgn(β)eiβω      (C.43) 
 
Example 2:  Equation (C.42) is valid for any β, so it is valid for -β. Since the Hilbert transform is linear 
we can then superpose exponentials to get the following correspondences,  
 
 f(ω) = k Σβ gβ e-iβω   ⇔ fh(t) = -ik Σβ sgn(-β) gβ e-iβt    
              

 f(ω) = k  ∫
-∞

 ∞  dβ g(β) e-iβω  ⇔ fh(t) = -ik  ∫
-∞

 ∞  dβ sgn(-β) g(β) e-iβt   

 
The last line can be written 
 
 f(ω) =  g^(ω)    ⇔ fh(t) = +i [ sgn(β)g(β) ]^(t) 
 
which then says 
 
 [g^(ω)]h(t) = +i [ sgn(β)g(β) ]^(t)  .  
 
If we suppress ω, then change t to ω, then β to t, and replace function name g by f, this says 
 
 (f^)h(ω) = +i [ sgn(t)f(t) ]^(ω)        (C.44) 
 
which we can compare with (C.31) which has the transforms in the reverse order 
 
 (fh)^(ω) = -i sgn(ω) f^(ω) .        (C.31) 
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Alternate derivation of (C.44).  
 
Start with (C.26) applied to f^ ,  
 

 (f^)h(t) ≡  (1/π) ∫-- ∞
-∞ dω 

f^(ω)
t-ω   

or 

 (f^)h  = pf( 
1
πt ) * f^ 

 
The diagonalized version is then, using (C.30),  
 
 a^(ω) = k-1 b^(ω) c^(ω) 
or 
 ((f^)h)^  = k-1 [-i k sgn(ω)]  f^^(ω)  = -i sgn(ω) f^^(ω)  . 
 
Use Fact 3 that f^^(ω)  = 2πk2 f(-ω) to get 
 
 ((f^)h)^(ω)  = -i sgn(ω) 2πk2 f(-ω)   =  2πk2 i sgn(-ω) f(-ω) 
  
Now take the Fourier transform of both sides 
 
 ((f^)h)^^(ω)   = 2πk2i [sgn(-s) f(-s)]^(ω) 
 
Use Fact 3 that ((f^)h)^^(ω) = 2πk2((f^)h)(-ω) to get 
 
 2πk2((f^)h)(-ω)  =  2πk2i [sgn(-s) f(-s)]^(ω) 
or  
 ((f^)h)(-ω)  =  i[sgn(-s) f(-s)]^(ω) 
or 
 ((f^)h)(ω)  =  i [sgn(-s) f(-s)]^(-ω) 
 
Finally we get to use Fact 0 that [f(-u)]^(-ω)  = f^(ω) to obtain the final result 
 
 ((f^)h)(ω)  =  i [sgn(s) f(s)]^(ω) 
  
which is (C.44).  
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Appendix D: Calculation of a Sum which appears in (35.17) 
 
 We want to show that  (k = ωT1, z = eik) 
 

 S ≡  ∑
s = -2N

2N
   

2N+1 - |s|
2N+1   z-s   =  

1
2N+1  

sin2[(N+1/2)k]
 sin2(k/2)        (D.1) 

 
where the right side is 2πδ6(k,N) of (A.20).  There are no doubt elegant ways to verify this identity, but 
we shall use the tried and true brute force method. We start off:   
 

 S = ∑
s = -2N

2N
   

2N+1 - |s|
2N+1   z-s   = ∑

s = -2N

2N
   z-s - 

1
2N+1 ∑

s = -2N

2N
  |s| z-s   = S1 - 

1
2N+1 S2  .    (D.2) 

 
The sum S1 we know from (A.30) and (A.15) is 
 

 S1 =  ∑
s = -2N

2N
   z-s  = 2π δ5(k,2N)  =  

sin[(N+1/2)k]
 sin (k/2)   .     (D.3) 

 
So we work then on S2 : 
 

 S2 = ∑
s = -2N

2N
  |s| z-s = ∑

s = -2N

-1
  |s| z-s  +  ∑

s = 1

2N
  |s| z-s  +  0 

 

  =  ∑
s = -2N

-1
  (-s) z-s +  ∑

s = 1

2N
  (s) z-s   = ∑

s = 1

2N
   (s) zs +  ∑

s = 1

2N
  (s) z-s  = ∑

s = 1

2N
  s (zs + z-s) 

 

  = 2 ∑
s = 1

2N
  s cos(ks) .          (D.4) 

 
Suppose we define 
 

 S3 ≡  ∑
s = 1

2N
   sin(ks) .         (D.5) 

 
Then (here ∂k means d/dk) 
 
 S2 = 2 ∂k S3.           (D.6) 
 
So we now work on S3 : 
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 S3 = ∑
s = 1

2N
   sin(ks)   = (1/2i) ∑

s = 1

2N
  [ zs - z-s]   =  (1/2i) [ ∑

s = 1

2N
   zs   -  c.c. ]    

 
       = (1/2i) [ S4  - c.c. ]         (D.7) 
 
where c.c means complex conjugate. We next work on  
 

 S4 =   ∑
s = 1

2N
   zs  = ∑

s = 0

2N
  zs  - 1 .         (D.8) 

 
Change summation variable to r = s-N so this becomes, again using (A.30), 
 

 S4 = ∑
r = -N

N
   z(r+N)  - 1  =  zN ∑

r = -N

N
  zr - 1  = zN 2π δ5(k,N)  - 1     (D.9) 

Then 
 
 [ S4  - c.c. ]  = { zN 2π δ5(k,N)  - 1} - { z-N 2π δ5(k,N)  - 1}    
                    = (zN - z-N) 2π δ5(k,N) .        (D.10) 
 
Backtracking now we find for (D.7) that 
 
 S3 =  (1/2i) [ S4  - c.c. ]   =   (1/2i) (zN - z-N) 2π δ5(k,N)  = sin(Nk) 2π δ5(k,N) .  (D.11) 
 
which gives a result we could have looked up (see Comment below),  
 

 ∑
s = 1

2N
   sin(ks)  = sin(Nk) 

sin[(N+1/2)k]
 sin (k/2)  .       (D.11)' 

 
It remains to compute S2 according to (D.6),  
 
 S2 = 2 ∂k S3  =  2 ∂k[sin(Nk) 2π δ5(k,N)] .       (D.12) 
 
Backing up more we then have from (D.2),  
 

 S = S1 – 
1

2N+1 S2   

    = 2π δ5(k,2N) – 
1

2N+1  2 ∂k[sin(Nk) 2π δ5(k,N)]      (D.13) 

 
so that 
 
 (2N+1)S =  (2N+1) 2π δ5(k,2N) – 2∂k[sin(Nk) 2π δ5(k,N)] .     (D.14) 
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Anticipating denominators of powers up to sin2(k/2) we rewrite this as 
 
 sin2(k/2) (2N+1)S  =   (2N+1) sin2(k/2)[ 2π δ5(k,2N)]  –  2  sin2(k/2) ∂k[sin(Nk) 2π δ5(k,N)]  
     =                       T1                      –                       T2 
Then let 
 

 D5(k,N)  ≡ [2π δ5(k,N)]  = 
sin[(N+1/2)k]

 sin (k/2)         (A.15) 

 
to get 
 
 T1 = (2N+1) sin2(k/2) D5(k,2N) 
 
 T2 =  2 sin2(k/2) ∂k[sin(Nk) D5(k,N)] .       (D.15) 
 
The statement (D.1) which we are trying to prove is now this:  
 

 S   =  2πδ6(n,K)  =  
1

2N+1  
sin2[(N+1/2)k]

 sin2(k/2)        (D.1) 

 
and adding our factors to both sides this becomes 
 
 sin2(k/2) (2N+1)S   = sin2(k/2) (2N+1)  2πδ6(n,K) 
 

      =  sin2(k/2) (2N+1) { 
1

2N+1  
sin2[(N+1/2)k]

 sin2(k/2)  } 

 
              = sin2[(N+1/2)k]  .        (D.16).  
 
If we then define this last factor as 
 
 T3 ≡ sin2[(N+1/2)k]          (D.17) 
 
our task is then to show that 
 
  T1 - T2 = T3 
or 
  Q ≡  T1 - T2 - T3  = 0.          (D.18) 
 
where 
  T1 = (2N+1) sin2(k/2) D5(k,2N) 
  T2 =  2 sin2(k/2) ∂k[sin(Nk) D5(k,N)] 

  D5(k,N)  ≡ 
sin[(N+1/2)k]

 sin (k/2)  

  T3 ≡ sin2[(N+1/2)k]  .        (D.19) 
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This is a task for Maple. We enter the quantities T1,T2,T3 and the function D5(k,N) :  
 

 
The Maple value command causes the differentiation to be carried out, so we continue :  
:  

 
 
Thus we have shown that Q = 0 so (D.1) is then verified.      QED 
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Comment:  Gradshteyn and Ryzhik provide the following summation formulas :  
 

  

  
 
An alternate method of verifying (D.1) would be to use two of these sums in an approach that begins this 
way 
 

 S ≡  ∑
s = -2N

2N
   

2N+1 - |s|
2N+1   z-s   =  ∑

s = -2N

2N
   

2N+1 - |s|
2N+1   (z-s + zs )/2   =  ∑

s = -2N

2N
   

2N+1 - |s|
2N+1   cos(ks) 

 

  = 1  + 2  ∑
s = 1

2N
   

2N+1 - s
2N+1   cos(ks)   =  1 +  2  ∑

s = 1

2N
   cos(ks) – 2 ∑

s = 1

2N
  s cos(ks) 
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Appendix E: Table of Transforms 
 
The following transforms appear in this document:   
 
Fourier Integral Transform: x(t) aperiodic and continuous, X(ω) continuous, no image spectra  
 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform    (1.1) 

 

 x(t) = (1/2π) ∫
-∞

 ∞ dω X(ω) e+iωt  expansion = inverse transform   (1.2) 

 
Generalized Fourier Integral Transform:  recovery contour passes below all singularities of X(ω)  
 

 X(ω) =  ∫
0

 ∞ dt x(t) e-iωt   projection = transform    (6.4) 

 

 x(t) = (1/2π)  ∫-ci-∞
 -ci+∞ dω X(ω) e+iωt  expansion = inverse transform   (6.5) 

  
Fourier Cosine Transform: 
 

 Xc(ω) = 2  ∫
0

 ∞ dt x(t) cos(ωt)  projection = transform 

 x(t) = (1/π) ∫
0

 ∞ dω Xc(ω) cos(ωt)  expansion = inverse transform   (1.7) 

 
Fourier Sine Transform: 
 

 Xs(ω) = 2  ∫
0

 ∞ dt x(t) sin(ωt)  projection = transform 

 x(t) = (1/π) ∫
0

 ∞ dω Xs(ω) sin(ωt)  expansion = inverse transform   (1.8) 

 
Fourier Integral Transform in Appendix C notation:   k is an arbitrary convention constant 
 

 x^(ω) =  k ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform  

 x(t) = (1/2πk)  ∫
-∞

 ∞ dω x^(ω) e+iωt  expansion = inverse transform 

 

 f^(ω) = k ∫
-∞

 ∞ du f(u) e-iωu   Fourier transform of f(u)    

 f^-1(t) = (1/2πk)  ∫
-∞

 ∞ du f(u) e+iut  inverse Fourier transform of f(u)   (C.1) 
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Fourier Series Transform:   x(t) periodic and continuous with period T1, spectrum is discrete 

 x(t)  = ∑
n = -∞

∞
   xpulse(t - nT1)         (14.1) 

 
Complex form: 
 

 cm ≡ (1/T1)  ∫
-∞

 ∞  dt xpulse(t) e-imω1t    = (1/T1)  ∫
0

 T1  dt x(t) e-imω1t   (14.16) 

 x(t) = ∑
m = -∞

∞
  cm e+imω1t          (15.1) 

 
 cm = c(mω1) = (1/T1)Xpulse(mω1)             (14.8) and (14.10) 
       
Real form:  

  am ≡  (2/T1)  ∫
-∞

 ∞ dt xpulse(t) cos(mω1t)    =  (2/T1)  ∫
0

 T1  dt x(t) cos(mω1t)  (15.6)  

  bm ≡  (2/T1)  ∫
-∞

 ∞ dt xpulse(t) sin(mω1t)    = (2/T1)  ∫
0

 T1  dt x(t) sin(mω1t)  (15.7)  

  x(t) = a0/2  + ∑
m = 1

∞
   am cos(mω1t)  + ∑

m = 1

∞
   bm sin(mω1t)        (15.9) 

 
Laplace Transform:  Right-sided (causal) x(t) vanishes for t < 0, x(t) and X(s) are continuous 
 

 X(s) =  ∫
0

 ∞ dt x(t) e-st   projection = transform    (6.9) 

 

 x(t) = (1/2πi)  ∫c-i∞
 c+i∞ ds X(s) e+is   expansion = inverse transform   (6.10) 

 
Relation to the Fourier Integral Transform:  
 
 X(s) = X(s/i) X(ω) =  X(iω)        (6.8) 
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Digital Fourier Transform:  x(tn) aperiodic, spectrum X'(ω) is continuous and contains image spectra 
 

 X'(ω) ≡ ∑
n = -∞

∞
  ∆t x(tn) e-iωtn   projection = transform    (22.2) 

 x(tn) =  
1
2π  ∫

-ω1/2

 ω1/2

 dω X'(ω) e+iωtn   expansion = inversion    (22.4) 

or 

 X'(ω) ≡ T1 ∑
n = -∞

∞
  xn e-iωnT1   projection = transform  xn = x(tn). 

 xn =  
1
2π  ∫

-ω1/2

 ω1/2

 dω X'(ω) e+iωnT1   expansion = inversion 

 
where:  T1 = ∆t  ω1 = 2π/T1 = 2π/∆t  tn =  n ∆t = n T1  . 
 
Relation to the Fourier Integral Transform: 
 

 X'(ω) = ∑
m = -∞

∞
  X(ω - mω1)   =   [  X(ω)  + ∑

m ≠ 0

 
  X(ω - mω1) ]  // image spectra  (23.1) 

 
Z Transform: x(tn) = xn is aperiodic, spectrum X"(z) is continuous and contains image spectra 
 

 X"(z) = ∑
n = -∞

∞
  xn z-n    projection = transform    (24.3) 

 xn = 
1

2πi 
 ∫

C

  dz X"(z) zn-1   expansion = inversion    (24.4) 

 
where contour C goes once counterclockwise around the unit circle in the z-plane. 
 
Relation to the Digital Fourier Transform and the Fourier Integral Transform:  
 

 X"(z)  ≡  
1

T1
  X'(ω)  = 

1
T1

 ∑
m = -∞

∞
  X(ω - mω1)  z = eiωT1      (24.1), (24.2) 
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Discrete Fourier Transform of a Pulse Train : x(tn) periodic, spectrum discrete, m integer 
 

 x(tm)  = ∑
n = -∞

∞
   xpulse(tm -  nT1)     sampled pulse train,  tm = (m/N)T1 

 c'm  ≡  (1/N) ∑
n = -∞

∞
  xpulse(tn) e-imn(2π/N)  projection = transform    (27.9) 

 x(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)                expansion = inverse transform     (27.11), (27.12) 

 
Discrete Fourier Transform (DFT) :   A is an arbitrary convention constant 
 

 c'm  ≡  (A/N) ∑
n = 0

N-1
  xn e-imn(2π/N)    m = 0,1...N-1      projection = transform 

 xn  = (1/A) ∑
m = 0

N-1
  c'm e+imn(2π/N) n = 0,1,...N-1      expansion = inverse transform (27.22) 

 
Hilbert Transform:  
 

 Xh(ω) =    (1/π) ∫-- ∞
-∞ dω' 

X(ω')
ω-ω'    projection = transform 

 X(ω)  =  - (1/π) ∫-- ∞
-∞ dω' 

Xh(ω')
ω-ω'    expansion = inverse transform   (C.41) 
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Appendix F:  The Spectrum and Power Density for Repeated-Sequence Pulse Trains 
 
Appendix F contents:   For infinite pulse trains composed of repeats of some length-P subsequence:  
 
 (a) computes X(ω) in (F.12) 
 (b) computes P(ω) in (F.23) in terms of  | YP"(z) |2. 
 (c) computes < P(ω)> for an ensemble of pulse trains which respect the special condition 
  <ym* yn>  = α for m ≠ n 
  <ym* yn>  = β for m = n  s < |m-n|       (F.25) 
 The result for  <P(ω)> is stated in (F.33) in several different forms.  
 (d) takes the P→∞ limit of the section (c) result for <P(ω)> 
 (e) computes P(ω) for a single pulse train which respects the special condition 
  <ymyn>1  = α for m ≠ n + NP    N = any integer  
  <ymyn>1  = β for m = n  + NP        (F.43) 
 where <ymyn>1 is a horizontal average across the single sequence (autocorrelation). 
 The result for  P(ω) is stated in (F.52).  
 It is noted that the results for < P(ω)> of (c) and P(ω) of (e) are exactly the same in terms of their 
 respectively defined α and β constants. It is then shown that these two sets of constants are the same.  
 (f) restates the overall result as the Fact (F.54).  
 A graphical representation is drawn for the spectrum in general, and then for a box pulse.  
 It is shown that the MLS sequence is a candidate for application of (F.54).  
 (g) treats the P = 2 repeated subsequence A,B using the general formulas of (a) and (b)  
 
We start with this collection of equations:  
 

 Y"(z)  = ∑
n = -∞

∞
  yn e-iωnT1  Z Transform of yn  (24.2)   (F.1) 

 | Y"(z) |2 =  ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1       (F.2) 

 
 X(ω)  = Xpulse(ω) Y"(z)      (25.3)   (F.3) 
 

 P(ω)  = Ppulse(ω) 
T1

T   | Y"(z) |2     (34.14)   (F.4) 

 
 z = eiωT1  ω1 ≡ 2π/T1     (24.1) 
 
In (F.4) T is the duration of the infinite pulse train, as in (33.22). The pulse train amplitudes are the yn. 
Since sequence ym is composed of subsequences of length P that repeat, we have this periodicity property 
of the yn 
 
 ym+IP  = ym   for any integer I        (F.5)  
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(a) Calculation of X(ω) for a Pulse Train with a Repeated Sequence 
 
Consider first the sum in (F.1). Let n  = IP + n' and write this sum as  
 

 ∑
n = -∞

∞
  yn e-iωnT1   = ∑

I = -∞

∞
     ∑

n' = 0

P-1
   yIP+n' e-iω(n'+IP)T1   = ∑

I = -∞

∞
   e-iωIPT1 ∑

n' = 0

P-1
   yn' e-iωn'T1  

 

  = ( ∑
I = -∞

∞
   e-iωIPT1) ( ∑

n = 0

P-1
   yn e-iωnT1) .       (F.6) 

 
We see that the sum factors into the product of two sums. The first sum we evaluate using  
 

 ∑
n = -∞

∞
   e-ink   = ∑

m = -∞

∞
  2πδ(k - 2πm) .  -∞  < k < ∞    (A.31) 

 
Setting k = ωPT1 we find 
 

 ( ∑
I = -∞

∞
   e-iωIPT1) = ∑

m = -∞

∞
  2πδ(ωPT1 - 2πm) .      (F.7) 

 
The second sum we give the name YP"(z) which is the Z transform of the subsequence { y0, y1.....yP-1}. 
 

 YP"(z)  ≡  ∑
n = 0

P-1
   yn e-iωnT1 .        (F.8) 

 
Thus we have shown that 
 

 Y"(z)  = ∑
n = -∞

∞
  yn e-iωnT1  =  YP"(z) ∑

m = -∞

∞
  2πδ(ωPT1 - 2πm) ,    (F.9) 

 
and then from (F.3). 
 

 X(ω)  = Xpulse(ω) Y"(z)  = Xpulse(ω) YP"(z) ∑
m = -∞

∞
  2πδ(ωPT1 - 2πm) .   (F.10) 

 
It is convenient to write 
 
 2πδ(ωPT1 - 2πm) = 2π(PT1)-1δ(ω - 2πm/PT1)  = (1/P) ω1 δ(ω - mω1/P)   (F.11) 
 
and then 
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 X(ω)  = Xpulse(ω) ω1 (1/P) YP"(z) ∑
m = -∞

∞
   δ(ω - mω1/P)     (F.12) 

 where     YP"(z)  ≡  ∑
n = 0

P-1
   yn e-iωnT1  .        (F.8) 

 
X(ω) is the Fourier Transform Spectrum of an infinite pulse train composed of a repeating P-length 
subsequence. Since the pulse train is periodic, the spectrum is entirely discrete with lines at 
 
 ωm = (m/P)ω1.          (F.13) 
 
(b) Calculation of P(ω) for a Pulse Train with a Repeated Sequence 
  
In Section 35 [ see below (35.26)' ] it was noted that P(ω) can be calculated either by the Autocorrelation 
method or the Double Sum method. Here we shall take the latter method based on (F.2) above.  
 
We can reorganize the double sum in (F.2) into a quadruple sum by defining :  
 
 n  = IP + n' 
 m = JP + m' .  
 
Then the double sum above becomes,  
 

 ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1    

 

 =  ∑
I = -∞

∞
    ∑

J = -∞

∞
    ∑

n' = 0

P-1
    ∑

m' = 0

P-1
   (yJP + m')* (yIP +n') eiωP(I-J)T1 eiω(m'-n')T1 

 

 =  ∑
I = -∞

∞
    ∑

J = -∞

∞
    ∑

n' = 0

P-1
    ∑

m' = 0

P-1
   (ym')* (yn') eiωP(I-J)T1 eiω(m'-n')T1  ,    (F.14) 

 
where in the last line we have used the periodicity (F.5) of the yn. The following illustration shows how, 
in this reorganization, we first sum over a square grid patch with n' and m', and then we sum over an array 
of those patches with I and J.  
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        Fig F.1 
  
In order to regulate things, we shall assume that the I and J sums range from -N to N rather than from -∞ 
to ∞. This means we are assuming that the sequence is (2N+1) repeated periods in length and not infinite. 
Then of course we can say 
 
 T = (2N+1)PT1 .          (F.15) 
 
As usual, we keep N finite as long as possible, and then take N→ ∞ in the end. 
 
We now rewrite (F.2) by removing the primes from summation indices and reordering the factors 
 

 | Y"(z) |2   =   ∑
n = -∞

∞
    ∑

m = -∞

∞
   ym* yn eiω(m-n)T1   →   

 

 =  [ ∑
I = -N

N
    ∑

J = -N

N
    eiωP(I-J)T1 ]  [ ∑

n = 0

P-1
    ∑

m = 0

P-1
    ym* yn eiω(m-n)T1 ]  

 

 =  [ ∑
I = -N

N
    ∑

J = -N

N
    eiωP(I-J)T1 ]  | YP"(z) |2        (F.16) 

 
As happened in (F.6) with a single sum, our double sum factors into a product of two double sums. The 
second double sum we recognize from (F.8) as | YP"(z) |2.  The first double sum is 
 

 [ ∑
I = -N

N
    ∑

J = -N

N
    eiωP(I-J)T1 ]  =  |  ∑

I = -N

N
   eiωPIT1  | 2      (F.17) 

 
Then apply (A.30) 
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 ∑
n = -N

N
   eink   =  2π δ5(k,N)  = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }      (A.30) 

 
with k = ωPT1 to get 
 

 [ ∑
I = -N

N
    ∑

J = -N

N
    eiωP(I-J)T1 ]   =  |  2π δ5(ωPT1,N)  | 2  =  (  2π δ5(ωPT1,N) ) 2  .  (F.18) 

 
Then from (A.20),  
 

 δ6(k,N) ≡  
1

2π   
[2πδ5(k,N)]2

(2N+1)    =   
1

2N+1  
sin2[(N+1/2)k]
 2π sin2(k/2)   ,     (A.20) 

 
we can write the first factor of (F.16) as  
 

 [ ∑
I = -N

N
    ∑

J = -N

N
    eiωP(I-J)T1 ]   =  (2N+1) 2π δ6(ωPT1,N)  = (1/P) 

T
T1

 2π δ6(ωPT1,N)    (F.19) 

 
where T is from (F.15). At this point we have, looking at (F.16) and (F.19),  
 

 | Y"(z) |2  =  [ ∑
I = -N

N
    ∑

J = -N

N
    eiωP(I-J)T1 ]  [ ∑

n = 0

P-1
    ∑

m = 0

P-1
    ym* yn eiω(m-n)T1 ] 

 

           = [  (1/P) 
T
T1

 2π δ6(ωPT1,N) ]    | YP"(z) |2  .     (F.20) 

 
Now finally we take N→∞ using (A.21) 
 

 limN→∞ δ6(k,N)  =  ∑
m = -∞

∞
  δ(k-2πm)         (A.21) 

or 

 limN→∞ δ6(ωPT1,N)  =  ∑
m = -∞

∞
  δ(ωPT1-2πm)        (F.21) 

 
with this result 

 | Y"(z) |2  =  [ (1/P) 
T
T1

 2π ∑
m = -∞

∞
  δ(ωPT1-2πm) ]   | YP"(z) |2   

or 

 
T1

T   | Y"(z) | = (1/P) ∑
m = -∞

∞
   2π δ(ωPT1-2πm) | YP"(z) |2  
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Using (F.11) we can rewrite this as 
 

 
T1

T   | Y"(z) | = ω1 (1/P)2 ∑
m = -∞

∞
   δ(ω - mω1/P)  | YP"(z) |2 .     (F.22) 

 
Installing this into (F.4) then gives 
 

 P(ω)  = Ppulse(ω) ω1 (1/P)2 ∑
m = -∞

∞
   δ(ω - mω1/P)  | YP"(z) |2     (F.23) 

 where     YP"(z)  ≡  ∑
n = 0

P-1
   yn e-iωnT1  .        (F.8) 

  
P(ω) is the Spectral Power Density of an infinite pulse train composed of a repeating P-length 
subsequence. The power density is discrete with lines at ωm = (m/P)ω1, the same lines observed in the 
spectrum X(ω) of (F.12).  
 
(c) Calculation for an Ensemble of such Pulse Trains subject to Certain Conditions 
 
We now imagine an ensemble of P-length subsequences si. We then create a corresponding ensemble of 
infinite length sequences  Si  according to Si =  {.......si, si, si, si,  ...}. This just an arbitrary ensemble, 
not a random ensemble or any other special kind ensemble.  
 
Then we apply the ensemble average <..> to (F.23) to get (assuming now that the yn are real ),  
 

 <P(ω)>  = Ppulse(ω)  ω1 ∑
m = -∞

∞
   δ(ω - ω1m/P)  

1
P2  ∑

n = 0

P-1
    ∑

m = 0

P-1
    <ymyn> eiω(m-n)T1  (F.24) 

 
At this point, suppose it happens that 
 
 <ymyn>  = α  for m ≠ n 
 
 <ymyn>  = β  for m = n        (F.25) 
 
where α and β are independent of the indices shown. Notice in the (F.24) sum that max(n-m) = P-1, so we 
don't have to worry about these indices differing by an integral multiple of P. We have now restricted our 
interest to the sequence {y0,y1, ...yP-1}.  
 
Comment:  In Section 35 we showed in (35.11)  that if a finite pulse train source has "stationarity", then 
 
 <ymyn>  = f(n-m) for m ≠ n  
 <ymyn>  = f(0) for m = n         (35.11) 
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This is not sufficient to meet the condition (F.25). If in addition we assume that Yn and Ym are 
independent, we find from (35.15) that 
 

 f(n-m)  = 
⎩
⎨
⎧   μ2            m ≠ n 
 σ2 + μ2    m = n . // stationarity and independence assumed  (35.15) 

  
This does meet condition (F.25), but this assumption is more than we want to assume, so we just leave 
condition (F.25) as stated. Notice that if (F.25) is met, then (35.11) is valid so we are in the stationary 
realm. The general picture might be illustrated by this Venn diagram,  
 

     
 
So assuming (F.25) we can write the double sum in (F.24) as, using z = eiωT1,  
 

  ∑
n = 0

P-1
    ∑

m = 0

P-1
    <ymyn> zm-n  = α  ∑

n = 0

P-1
    ∑

m≠n 
   zm-n  + β ∑

n = 0

P-1
   1 

 

  = α  ∑
n = 0

P-1
   ∑

m≠n 
   zm-n   +    β P        (F.26) 

 
To evaluate the double sum, write it as 
 

 ∑
n = 0

P-1
   ∑

m≠n 
   zm-n  = ∑

n = 0

P-1
  [ ∑

m = 0

P-1
   zm-n  –  ∑

m=n 
   zm-n ]  = ∑

n = 0

P-1
  [ ∑

m = 0

P-1
   zm-n  –  1 ] 

 

  =  ∑
n = 0

P-1
    ∑

m = 0

P-1
   zm-n  - P    = | ∑

n = 0

P-1
   zm  |2  –  P     =  | 

 1-zP

1-z   |2  –  P .    (F.27) 

 
Letting z = eik with k = ωT1 one finds,  
 

 | 
 1-zP

1-z   |2 =  
(1-e-iPk)
(1-e-ik)  

(1-eiPk)
(1-eik)    =  

2-2cos(kP)
 2-2cos(k)   =  

1-cos(kP)
 1-cos(k)      (F.28) 

 
so that 
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 | 
 1-zP

1-z   |2   = 
sin2(Pk/2)
sin2(k/2)   .         (F.29) 

 
Now recall from (A.20) that 
 

 δ6(k,N) ≡   
1

2N+1  
sin2[(N+1/2)k]
 2π sin2(k/2)  .       (A.20) 

 
Setting N = (P-1)/2 we find P = 2N+1 and N+1/2 = P/2 so,  
 

 2πδ6(k, 
P-1
2  ) =   

1
P 

sin2(kP/2)
sin2(k/2)   .        (A.20) 

 
and thus 
 

 | 
 1-zP

1-z   |2   =  
sin2(kP/2)
sin2(k/2)    =  P 2πδ6(k, 

P-1
2  )   .      (F.30) 

 
Therefore from (F.27),  
 

 ∑
n = 0

P-1
   ∑

m≠n 
   zm-n  =  2π P δ6(k, 

P-1
2  ) - P  = P [2πδ6(k, 

P-1
2  ) - 1 ]    (F.31) 

 
and from (F.26) 
 

 ∑
n = 0

P-1
    ∑

m = 0

P-1
    <ymyn> zm-n  = α P [2πδ6(k, 

P-1
2  ) - 1 ] + β P 

    =  P [ (β-α) +  α 2πδ6(k, 
P-1
2  ) ]      (F.32) 

 
the power density (F.24) becomes 
 

 <P(ω)>  = Ppulse(ω)  ω1 ∑
m = -∞

∞
   δ(ω - ω1m/P)  

1
P   [ (β-α) + α 2πδ6(ωT1, 

P-1
2  ) ]  (F.33a)  

where 

  2π δ6(ωT1, 
P-1
2  ) = 

1
P   

sin2(PωT1/2)
sin2(ωT1/2)  . 

 
Evaluating at the delta function hit values ω = ω1m/P ond finds,  
 

 2π δ6  = 
1
P 

sin2(mπ)
sin2(mπ/P)   =  

⎩
⎨
⎧   0   m ≠ NP
 P   m = NP  for N = any integer  .    
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To get alternate forms for (F.33a), we first express each term as a separate sum,  
 

 <P(ω)>  = Ppulse(ω)  ω1  
1
P  [(β-α) ∑

m = -∞

∞
  δ(ω - ω1m/P)  +  α ∑

m = -∞

∞
  δ(ω - ω1m/P) 2πδ6(ωT1, 

P-1
2  ) ] . 

 
Since only those m which are multiples of P contribute to the second sum in (F.33a), we may rewrite that 
second sum as follows, 
 

<P(ω)>  = Ppulse(ω)  ω1  
1
P  [(β-α) ∑

m = -∞

∞
  δ(ω - ω1m/P)  +  α ∑

N = -∞

 ∞
  δ(ω - ω1N) P ]  // m = NP 

   = Ppulse(ω)  ω1   [(β-α)  
1
P ∑

m = -∞

∞
  δ(ω - ω1m/P)  +  α ∑

m = -∞

∞
  δ(ω - ω1m)  ]   (F.33b) 

  =  Ppulse(ω)  ω1 ∑
m = -∞

∞
  [ (β-α)  

1
P δ(ω - ω1m/P)  +  α δ(ω - ω1m)  ]     (F.33c) 

  = Ppulse(ω) ω1 [ (β-α) 
1
P ∑

m ≠ 0

 
  δ(ω - ω1m/P)  +  α ∑

m ≠ 0

 
  δ(ω - ω1m)  + { (β-α) /P + α } δ(ω) ] . 

             (F.33d) 
If xpulse(t) is real, then by (7.5) Ppulse(ω) is an even function of ω, and we can then reflect the negative 
part of the sum to the positive side to get,  
 

  = Ppulse(ω) ω1 [ (β-α) 
2
P ∑

m = 1

 ∞
  δ(ω - ω1m/P)  +  2α ∑

m = 1

 ∞
  δ(ω - ω1m)  + { (β-α) /P + α } δ(ω) ] . 

             (F.33e) 
In all forms of (F.33) we have:   α = <ymyn> for m≠n    β  = <yn2> .  
 
These slightly different forms of <P(ω)> are useful for different purposes. All results are valid for any 
finite integer P. Since each sequence in the ensemble is periodic with the same period P, the ensemble 
average spectrum is entirely discrete. The m≠0 sums include positive and negative integers.  
 
(d) Limit as P → ∞ of the Ensemble Result 
 
We would now like to take the limit of the above as P→∞.  Write (F.33b) as 
 

 <P(ω)> = Ppulse(ω)  [(β-α)  { 
ω1
P  ∑

m = -∞

∞
  δ(ω - ω1m/P) }  +  ω1  α ∑

m = -∞

∞
  δ(ω - ω1m)  ]  . (F.34) 

Then define 
 

 fP(ω) ≡ 
ω1
P  ∑

m = -∞

∞
  δ(ω - ω1m/P) .        (F.35) 
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As P→∞, the spacing of the δ lines becomes closer and closer, while the amplitude 
ω1
P   of each δ line 

becomes less and less. Perhaps we can argue that in the limit this becomes some continuous function.  
 
In line with the distribution theory approach to symbolic functions noted in Appendix A, suppose we 
integrate this function from some a to a+ε for small ε, where a is an arbitrary real number, 
 

  ∫
a

 a+ε  fP(ω) dω  = 
ω1
P  ∑

m = -∞

∞
   ∫

a

 a+ε  δ(ω - ω1m/P) 

  = 
ω1
P    ∑

m = -∞

∞
   Θ(a ≤ω1m/P ≤ a+ε)        (F.36) 

 
where we use the notation of Appendix A (e) for the Θ function which takes value 1 if the inequality 
argument is valid, meaning there is a delta hit. If P is a large integer, how many non-zero terms does this 
Σm have? The inequality argument reads 
 
 Pa/ω1 ≤ m ≤ Pa/ω1 + Pε/ω1 . 
 
Since P is large, we round each term in this equation to the nearest integer, making little error. We select a 
very small ε first, and then we make sure P is large enough so Pε/ω1 is still a reasonably large integer 
when rounded.  Then we have 
 

  ∫
a

 a+ε  fP(ω) dω =  
ω1
P  ∑

m =Pa/ω1

 Pa/ω1 + Pε/ω1 
   Θ(a ≤ω1m/P ≤ a+ε)   =   

ω1
P   ∑

m =Pa/ω1

 Pa/ω1 + Pε/ω1 
   1     

  = 
ω1
P    ( Pε/ω1)  = ε .         (F.37) 

Since we then have (for very large P) that  ∫
a

 a+ε  fP(ω) dω =  ε  for any real a and for ε as small as we 

like, and since the integral over range ε is proportional to ε, the function fP(ω) is equivalent to the 
constant function 1. Thus we have shown that,   
 

 limP→∞ fP(ω)  = limP→∞ [ 
ω1
P  ∑

m = -∞

∞
  δ(ω - ω1m/P)]  =   1.     (F.38) 

 
We then obtain this P→∞ limit of (F.34),  
 

 <P(ω)> = Ppulse(ω)  [(β-α)  +  ω1  α ∑
m = -∞

∞
  δ(ω - ω1m)  ]     (F.39) 

       = Ppulse(ω)  [(β-α)  +  (1/T1)  α ∑
m = -∞

∞
  2π δ(ω - ω1m)  ] // ω1 = 2π/T1 
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       = Ppulse(ω)  [(β-α)  +  α ∑
m = -∞

∞
  2π δ(ωT1 - 2πm)  ] . 

   
This limit agrees with our result (35.11) for a random ensemble of infinite sequences for which <aman> 
does not depend on the values of m and n,  
  

 <P(ω)>  =  Ppulse(ω) { (β-α)  + α ∑
m = -∞

∞
  2π δ(ωT1- 2πm) }     (35.11) 

 
In the limit P→∞ , the discrete lines δ(ω - ω1m/P) shown in (F.34) have coalesced into a continuous 
function. See Fig F.2 below for a graphical view.  
  
(e) Calculation of  P(ω) for a single P-periodic Pulse Train subject to Certain Conditions 
 
We really know ahead of time how this calculation will come out, but we do it nevertheless to convince 
the reader that the result is valid. After getting the result, we shall comment on why it is the way it is.  
 
Recall this expression for P(ω), which incorporates the discrete Wiener-Khintchine relation,  
 

 P(ω)  = Ppulse(ω) 
T1

T   | Y"(z) |2  = Ppulse(ω) R"(z)    (34.14a) (F.40) 

 
where R"(z) is the Z transform of the autocorrelation sequence rs obtained from the yn. 
 
Our first task is to find rs, which we defined this way,  
 

 rs  ≡  limN→∞ [
1

(2N+1) ∑
n = -N

N
   yn yn+s ]  =  <yn yn+s>1 .   (32.16)  (F.41a) 

 
Since yn is periodic as shown in (F.5), rs may be written in this alternate form:  
 

 rs = 
1
P ∑

n = 0

P-1
   yn yn+s  =  <yn yn+s>1        (F.41b) 

 
Proof:   For large N, we can replace the sum endpoints by -N = -MP and +N = MP ≈ (M+1)P where M is 
also large. The sum then has (2M+1)P terms, so  
 

 rs  ≡  limM→∞ [
1

(2M+1) 
1
P ∑

n =  -MP

 (M+1)P
   yn yn+s ] . 

 
We now let n = IP + n'  where n' takes values 0,1..P-1 and I = Int(n/P). Then the single sum above can be 
written, 
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  ∑
n =  -MP

 (M+1)P
   yn yn+s =  ∑

I = -M

M
    ∑

n' = 0

P-1
   yIP+n' yIP+n'+s 

 
where this drawing shows how the sum is now a double sum where I denotes segments containing P 
points, and n' counts the points in each segment,  
 

     
 
We then process this sum using the periodicity (F.5) to get 
 

  = ∑
I = -M

M
    ∑

n' =0

P-1
   yn' yn'+s   = ( ∑

I = -M

M
  1 ) ( ∑

n = 0

P-1
   yn yn+s )  =  (2M+1) ( ∑

n =0

P-1
   yn yn+s )  .  

 
Inserting the expression into rs, we get this alternate form for rs  
 

 rs =  limM→∞  [
1

(2M+1) 
1
P { (2M+1) ( ∑

n = 0

P-1
   yn yn+s ) } ]  = 

1
P ∑

n = 0

P-1
   yn yn+s   QED 

 
From now on we assume that the ym are real.  Back in (F.25) we made the assumption that  
 
 <ymyn>  = α  for m ≠ n  s < | m-n |  
 <ymyn>  = β  for m = n        (F.25) 
 
where <...> were ensemble averages. Here we are going to make a completely different assumption, and 
this assumption applies to a single sequence:  
 
 <ymyn>1  = α for m ≠ n  s < | m-n |  
 <ymyn>1  = β for m = n        (F.42) 
 
Comment:  If we imagine drawing each sequence of an ensemble as a row in a set of rows 
 
  ... * * yn * yn+2 ...   sequence #1 
  ... * * y'n * y'n+2 ...  sequence #2 
  ... * * y"n * y"n+2 ...  sequence #3 
 
then any ensemble average like <ynyn+2> is a vertical average through the ensemble, whereas an average 
like <ynyn+2>1 is a horizontal average across one particular sequence row and <ynyn+2>1 never depends 
on n as (F.41) shows. These two averages are unrelated and (F.42) being true does not imply that (F.25) is 
true. As an example, one might take 10 infinite sequences each of which satisfies (F.42) and put them 
down as a set of rows, and then each row is shifted horizontally some amount to cause a 0 to be in column 
n. For the resulting 10 row ensemble, one would find that <yn2> = 0 for column n, whereas <yn2>1 = β ≠ 
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0 . This contrived situation, however, would be a violation of "stationarity" as discussed in (35.10), and in 
fact for a very large ensemble of our infinite pulse trains we will argue below that in fact <ynyn+2> =  
<ynyn+2>1, but we put that argument on a back burner for the moment and maintain the distinction 
between <..>  and <..>1.  
 
Since we require rs for arbitrary s in order to compute R"(z), we extend (F.42) in this manner 
 
 <ymyn>1  = α for m ≠ n + NP    N = any integer  
 <ymyn>1  = β for m = n  + NP        (F.43) 
 
which is to say, for s being any integer whatsoever,  
 
 <yn yn+s>1  = α s ≠ NP 
 <yn yn+s>1  = β s = NP  .        (F.44) 
  
The reason of course is that {ym} is periodic with period P,  
 
 ym+NP  = ym   for any integer N       (F.5)  
 
so we must have for example <yn yn+P>1  = <yn yn>1  = β.  
  
Thus we have arrived at our characterization of the autocorrelation sequence rs for our specific infinite 
periodic sequence with the assumption (F.44),  
 

 rs =  <yn yn+s>1  = 
⎩
⎨
⎧   α   s ≠ NP
 β   s = NP   N =  any integer     (F.45) 

 
Our next step is to compute its Z transform R"(z),  
 

 R"(z) = ∑
n = -∞

∞
  rn z-n  = β ∑

n = NP

 
  z-n   +  α  ∑

n ≠NP

 
  z-n 

  = β ∑
n = NP

 
  z-n   +  α ( ∑

n = -∞

∞
   z-n   –  ∑

n = NP

 
  z-n ) 

  = (β-α) ∑
n = NP

 
  z-n  + α ∑

n = -∞

∞
   z-n .        (F.46) 

 
The first sum is over n = 0, ±P, ±2P and so on. We can replace summation index n by index N,  
 

 ∑
n =NP

 
  z-n  = ∑

N =-∞

 ∞
   z-NP = ∑

n = -∞

∞
   z-nP .       (F.47) 

 
From (24.1) we know that z lies on the unit circle in the z-plane and is related to ω by 
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 z = eiωT1                  (24.1) 
 
where T1 is the duration of a pulse of the pulse train. We then have 
 

 ∑
n =NP

 
  z-n  = ∑

n = -∞

∞
   (eiωT1)-nP  = ∑

n = -∞

∞
   e-iωT1nP .      (F.48) 

 
According to (A.31),  
 

 ∑
n = -∞

∞
   eink   = ∑

m = -∞

∞
  2πδ(k - 2πm)   -∞  < k < ∞    (A.31) 

 
so setting k = -ωT1P we get 
 

 ∑
n =NP

 
  z-n  = ∑

m = -∞

∞
  2πδ(-ωT1P - 2πm)  = ∑

m = -∞

∞
  2πδ(ωT1P + 2πm)  = ∑

m = -∞

∞
  2πδ(ωT1P - 2πm) (F.49)  

 
where we use δ(x) = δ(-x) and in the last step take m→ -m.  
 
Meanwhile, our other sum of interest in (F.46) is this one,  
 

 ∑
n = -∞

∞
   z-n  = ∑

n = -∞

∞
   (eiωT1)-n   =   ∑

n = -∞

∞
   e-iωT1n 

 
which is just the previous sum without the P. Thus,  
 

 ∑
n = -∞

∞
   z-n   =  ∑

m = -∞

∞
  2πδ(ωT1 - 2πm) .       (F.50) 

 
Inserting (F.48) and (F.49) into (F.46) gives 
 

 R"(z) = (β-α) ∑
n =NP

 
  z-n  + α ∑

n = -∞

∞
   z-n  

 

  = (β-α) ∑
m = -∞

∞
  2πδ(ωT1P - 2πm) + α ∑

m = -∞

∞
  2πδ(ωT1 - 2πm)  

 

  = (β-α) (T1P)-1 ∑
m = -∞

∞
  2πδ(ω - 2πm/[T1P]) + α(T1)-1 ∑

m = -∞

∞
  2πδ(ω - 2πm/T1)  
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  = (2π/T1) { (β-α) (1/P) ∑
m = -∞

∞
  δ(ω - 2πm/[T1P]) + α ∑

m = -∞

∞
  δ(ω - 2πm/T1) } 

 

  = ω1 { (β-α) (1/P) ∑
m = -∞

∞
  δ(ω - mω1/P) + α ∑

m = -∞

∞
  δ(ω - mω1) }    (F.51) 

 
and this concludes our calculation of the Z Transform R"(z) of the autocorrelation sequence rs.  
 It only remains to install this into the Z Transform Wiener-Khintchine relation (34.14a) which says 
 
 P(ω)  = Ppulse(ω) R"(z)         (34.14a) 
  
so then 

 P(ω)   =   Ppulse(ω) ω1 { (β-α) 
1
P  ∑

m = -∞

∞
  δ(ω - mω1/P) + α ∑

m = -∞

∞
  δ(ω - mω1) }   

         = Ppulse(ω)  ω1 ∑
m = -∞

∞
  [ (β-α)  

1
P δ(ω - ω1m/P)  +  α δ(ω - ω1m)  ]    (F.52c) 

 
We may compare this to the ensemble result of the section (c) above,  
 

 <P(ω)>  =  Ppulse(ω)  ω1 ∑
m = -∞

∞
  [ (β-α)  

1
P δ(ω - ω1m/P)  +  α δ(ω - ω1m)  ]  .  (F.33c) 

 
The expressions are exactly the same ! However, the meaning of the symbols α and β is not the same 
according to the definitions given above in (F.25) and (F.42).  
 
Why are the expressions the same? This goes back to the general discussion of Section 35 (h) where it 
was shown that, for infinitely long pulse trains, <ymyn>1 =  <ymyn>  (35.24) and <P(ω)> = P(ω) (35.27) 
and all pulse trains in the ensemble are statistical pulse trains having the same statistics and having the 
same P(ω). Thus, our result (F.52c) above had to come out the same as (F.33c). Moreover, the quantities 
α and β are in fact the same values in the two cases.  
 
Since the expressions have the exact same form, we can rewrite (F.52c) in the same alternate ways that 
(F.33c) was written: 
 

 P(ω)  = Ppulse(ω)  ω1 ∑
m = -∞

∞
  δ(ω - ω1m/P)  

1
P  [(β-α)  + α 2π δ6(ωT1, 

P-1
2  ) ]   (F.52a)   

   = Ppulse(ω)  ω1  
1
P  [(β-α) ∑

m = -∞

∞
  δ(ω - ω1m/P)  +  α ∑

N = -∞

 ∞
  δ(ω - ω1N) P ]  // m = NP 

   = Ppulse(ω)  ω1   [(β-α)  
1
P ∑

m = -∞

∞
  δ(ω - ω1m/P)  +  α ∑

m = -∞

∞
  δ(ω - ω1m)  ]   (F.52b) 
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  =  Ppulse(ω)  ω1 ∑
m = -∞

∞
  [ (β-α)  

1
P δ(ω - ω1m/P)  +  α δ(ω - ω1m)  ]     (F.52c) 

  = Ppulse(ω) ω1 [ (β-α) 
1
P ∑

m ≠ 0

 
  δ(ω - ω1m/P)  +  α ∑

m ≠ 0

 
  δ(ω - ω1m)  + { (β-α) /P + α } δ(ω) ] 

             (F.52d) 
(f) Summary and an Example:  The MLS Sequence 
 
Fact : For an infinite statistical sequence made of repeated subsequences of length P :  (F.54) 
if the following is found to be true,  
 
 <ymyn>1  = α for m ≠ n + NP    N = any integer  
 <ymyn>1  = β for m = n  + NP        (F.43) 
 
then the spectral power density is given by :  (this is one of several forms shown in (F.52)   
       

 P(ω)   = Ppulse(ω)  ω1 ∑
m = -∞

∞
  [ (β-α)  

1
P δ(ω - ω1m/P)  +  α δ(ω - ω1m)  ]   (F.52c) 

 
The parameters α and β can be interpreted as elements of the autocorrelation sequence 
 

 rs =  <yn yn+s>1  = 
⎩
⎨
⎧   α   s ≠ NP
 β   s = NP   N =  any integer     (F.45) 

 
The form shown in (F.52d) is 
 

 P(ω)  =   Ppulse(ω) ω1 [ (β-α) 
1
P ∑

m ≠ 0

 
  δ(ω - ω1m/P)  +  α ∑

m ≠ 0

 
  δ(ω - ω1m)  + { (β-α) /P + α } δ(ω) ] 

 
which has the following graphical representation (drawn for P = 4),  
 

 
             Fig F.2 
 
Each vertical arrow represents a spectral δ line. The height of the arrow is the value of the red envelope 
curve times the quantity shown. The red curve Ppulse(ω) ω1 will in general have an infinite extent, an 
example being Ppulse(ω) ω1 = sinc2(ωT1/2) = sinc2(πω/ω1) for a box shaped pulse as in (9.2).  
 
As P → ∞, we showed in section (d) the spectrum (F.52d) becomes,  
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 Ppulse(ω) ω1 [ (β-α)  +  α ∑
m ≠ 0

 
  δ(ω - ω1m)  + α δ(ω) ] 

 
Regarding the three images of Fig F.2, we see that 
 • the left set of dense arrows coalesces into the continuous function (β-α) Ppulse(ω) ω1 
 • the middle set of arrows stays exactly the same 
 • the amplitude of the DC line becomes α  
 
Once a particular Ppulse(ω) is specified, some of the spectral lines may be quenched. For the box pulse 
 
 Ppulse(ω) ω1 = sinc2(ωT1/2) = sinc2(πω/ω1)      (36.1) 
 
lines are quenched when ω = Nω1 for N = ±1,±2 .... In this case, all the lines of the central image go away 
and the corresponding lines in the left image also vanish, this being every Pth line in that image: 
 

 
             Fig F.3 
Example: The MLS Sequence 
 
A Maximum Length Sequence (MLS) (Lucht, Polynomial Multipliers... ) which is created by a shift 
register generator has the property (F.44), specifically,  
 
 <yn yn+s>1  = α  =  (1/4)(1 + 1/P)   s ≠ NP 
 <yn yn+s>1  = β   = (1/2)(1 + 1/P)     s = NP      (F.44) 
 
where P must be one of the special values P = 2k-1 for k = 1,2,3.... Therefore, by Fact (F.54) the spectrum 
P(ω) of an MLS sequence is given by  
 

 P(ω)   =  Ppulse(ω)  ω1 ∑
m = -∞

∞
  [ (β-α)  

1
P δ(ω - ω1m/P)  +  α δ(ω - ω1m)  ]  .   (F.52) 

      =  [Ppulse(ω) ω1]  (1/4)(1 + 1/P) ∑
m = -∞

∞
  [  

1
P δ(ω - ω1m/P)  +  δ(ω - ω1m)  ]  .  (F.55)  
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(g) Results for an A,B repeated sequence  
 
This subject is treated in Section 34 (c) using a "brute force" approach and a "Fourier Series" approach. 
Here we duplicate the main results of that section by applying our general formulas to a sequence where 
the repeated subsequence is just P = 2, {y0,y1} = {A,B}, and we allow A and B to be complex. The fact 
that the results here agree with Section 34 lends some confidence to all three methods of computation.  
 
Our general expressions for X(ω) and P(ω) are,  
 

 X(ω)  = Xpulse(ω) ω1 (1/P) YP"(z) ∑
m = -∞

∞
   δ(ω - mω1/P)     (F.12) 

 P(ω)  = Ppulse(ω) ω1 (1/P)2 ∑
m = -∞

∞
   δ(ω - mω1/P)  | YP"(z) |2     (F.23) 

 where     YP"(z)  ≡  ∑
n = 0

P-1
   yn e-iωnT1  .        (F.8) 

 
For a repeated A,B sequence P = 2 we have 
 
 YP"(z)  = A + B e-iωT1  
 
 | YP"(z) |2 = | A + B e-iωT1 |2  = |A|2 + |B|2 + 2 Re{A*B e-iωT1} 
 
Then, 

 X(ω)AB  = Xpulse(ω) ω1 (1/2) [A + B e-iωT1] ∑
m = -∞

∞
   δ(ω - mω1/2)  

 P(ω)AB  = Ppulse(ω) ω1 (1/4) [  |A|2 + |B|2 + 2 Re{A*B e-iωT1} ] ∑
m = -∞

∞
   δ(ω - mω1/2)  . 

 
We can slide the square-bracketed factors inside the sum and then use 
 
 ωT1 = (mω1/2)T1 = π m(ω1/2π)T1 = πm  => e-iωT1  =  (-1)m 
 
and the results simplify to  
 

 X(ω)AB  = Xpulse(ω) ω1 (1/2) ∑
m = -∞

∞
   [A +  B (-1)m] δ(ω - mω1/2)  

 P(ω)AB  = Ppulse(ω) ω1 (1/4) ∑
m = -∞

∞
   [  |A|2 + |B|2 + 2 Re(A*B) (-1)m  ] δ(ω - mω1/2)  . 

  
These results agree with (34.18) and (34.20), see just below Fig 34.1 . 
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For a box pulse of height 1 and width T1 we know that  
 
 Xpulse(ω) = T1 sinc(ωT1/2)   = (1/ω1) 2π sinc(ωT1/2)     (9.2) 
 

 Ppulse(ω)  = 
|Xpulse(ω)|2

2πT1
  = (1/ω1) sinc2(ωT1/2)  .      (33.24) 

 
Then for a square wave with alternating A,B amplitudes we get 
 

 X(ω)AB  = 2π sinc(ωT1/2) (1/2) ∑
m = -∞

∞
   [A +  B (-1)m] δ(ω - mω1/2)  

 P(ω)AB  = sinc2(ωT1/2) (1/4) ∑
m = -∞

∞
   [  |A|2 + |B|2 + 2 Re(A*B) (-1)m  ] δ(ω - mω1/2) . 

 
When the sinc functions are moved inside the sum, ωT1/2 = πm/2, so 
 

 X(ω)AB  = 2π (1/2) ∑
m = -∞

∞
   [A +  B (-1)m] sinc(πm/2) δ(ω - mω1/2)  

 P(ω)AB  = (1/4) ∑
m = -∞

∞
   [  |A|2 + |B|2 + 2 Re(A*B) (-1)m  ] sinc2(πm/2)δ(ω - mω1/2)  .  

But 
 
 sinc(πm/2) = (2/πm) sin(πm/2)  =  1 for m = 0 
      =  0 for m even 
                 = (2/πm) (-1)(m-1)/2 for m odd 
so we get 
 

 X(ω)AB  = 2π (1/2) ∑
m =odd

 
   [A –  B (-1)m] (2/πm) (-1)(m-1)/2 δ(ω - mω1/2)  + 2π (1/2) [A+B] δ(ω) 

 P(ω)AB  = (1/4) ∑
m =odd

 
   [  |A|2 + |B|2 + 2 Re(A*B) (-1)m  ] (2/πm)2 (-1)(m-1) δ(ω - mω1/2)  

      + ω1 (1/4) [  |A|2 + |B|2 + 2 Re(A*B)  ] δ(ω) 
or 

 X(ω)AB  = 2 ∑
m =odd

 
   [A –  B] (1/m) (-1)(m-1)/2 δ(ω - mω1/2)  + π [A+B] δ(ω) 

 P(ω)AB  = (1/π2) ∑
m =odd

 
   [  |A|2 + |B|2 – 2 Re(A*B)  ] (1/m)2  δ(ω - mω1/2)  

      + ω1 (1/4) [  |A|2 + |B|2 + 2 Re(A*B)  ] δ(ω) 
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For a standard-issue square wave with B = - A we have 
 
 [A –  B]  = 2A [  |A|2 + |B|2 – 2 Re(A*B)  ]  = 4 |A|2 
 [A +  B]  = 0 [  |A|2 + |B|2 + 2 Re(A*B)  ]  = 0 
 
and therefore 

 X(ω)A,-A  =  4A ∑
m =odd

 
    (1/m) (-1)(m-1)/2 δ(ω - mω1/2) 

 P(ω)A,-A  =  4A2
 (1/π2) ∑

m =odd

 
    (1/m)2  δ(ω - mω1/2)  

  
in agreement with (34.23). 
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Appendix G:  Random Variables, Probability Theory and Pulse Train Amplitudes 
 
This subject always seems a bit slippery. One can find a discussion like the one presented below in every 
book on probability theory, but here we wish perhaps to put our own "spin" on the subject with wordy 
comments not always appearing in texts.  
 
(a) What is a Random Variable ? Part I 
 
A random variable only exists and has meaning in a certain context. The context is that there is some 
experiment that is performed many times, and the random variable is associated with a particular 
outcome of that experiment. An experiment is "something one does" or "something that is done" and an 
outcome is "something one measures after the experiment is done". A simple example is experiment = 
roll one die, outcome = number facing up after the die is rolled = random variable n.  The set of all 
possible outcomes is called the sample space, often indicated by Ω (element = ω) or S (element = s).  For 
the die experiment, we have Ω = {1,2,3,4,5,6} as the sample space. Since this is a set, various concepts 
regarding sets can be applied. A set we know has subsets. Each subset of the sample space has a peculiar 
name, each subset is called an event. In the die experiment, a possible event would be {2,4,6} which 
event is that the die rolled an even number. Another event would be {6} which event is that the die rolled 
a 6. For this experiment, the sample space is discrete.  
 So far we have not defined "random variable" but have said it is "associated with" the outcome of 
some experiment. If we assume that the experimental outcome of interest takes real numerical values, 
then the "variable" of the random variable is that outcome. The "random" part of random variable means 
that the variable does not take a fixed value, but instead takes a range of values as the experiment is 
repeated. After the experiment is done many times, one can compute a probability distribution for the 
outcome, so there is always a probability distribution associated with a random variable.  
 A common wrong impression inferred from the word "random" in this context is that the probability 
distribution must be "flat". For the die experiment, a flat distribution would mean that the probability of 
each face-up value was Pn = 1/6. This is not what random means in this context. It just means that there 
exists some distribution of outcome values. A better phrase might be "statistical variable" or "probabilistic 
variable".  If a die is loaded so that Pn is different for the 6 faces, n is still a random variable.  
 If the distribution of outcomes happens to be a Gaussian (normal) distribution, then one might refer to 
the variable as a "Gaussian random variable". 
 Therefore, for an experiment which has a real numerical outcome, the "random variable" is that 
outcome and there exists a non-trivial probability distribution for that outcome which can be determined 
by doing the experiment many times. In order to say one has a "random variable", one must be able to 
state both the experiment that gets done, and the particular outcome of that experiment that is of interest.  
 
Next, consider experiment = one spins a "spinner". This is a traditional (in probability texts) physical 
object that one might think of as a horizontal Lazy Susan having an arrow from center to some point on 
the rim, or a Roulette Wheel with some point marked on the rim, or just a metal arrow you spin and drop 
on a table top. The outcome of this experiment is the direction in which the arrow points in range (0, 2π) 
perhaps clockwise relative to North. In this example, the sample space is all real numbers in the interval 
(0,2π). For this experiment, the sample space is a continuous set which one could regard as the limit of a 
discrete set as the number of elements increases.  
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We shall now assume that in the die experiment the die was a "loaded" die of some sort, and that in the 
spinner experiment, the arrow was perhaps influenced by magnetic fields or by bad bearings on the Lazy 
Susan. If we do each experiment many times and each time we observe and write down the outcome, we 
can then "bin" these outcomes and create a distribution by dividing each bin count by the total number of 
experiments done ( see section (f) below) . Here are possible distributions for our two experiments.  
 

 
             Fig G.1 
 
For the spinner, the distribution is continuous and is called a probability density function or pdf. For the 
die, the distribution is discrete as is called a probability mass function or pmf .  One could in fact write 
down a pdf for the left picture assuming n was a continuous variable in this manner, 
 
 pdf(n)  = Σi=16  pmf(n) δ(i-n)  .          (G.1) 
 
Both a pmf and pdf must sum to one, since the probability of some outcome is always 1,  
 

 Σk=16 pmf(k)   = 1    ∫
0

 2π pdf(x)dx  = 1. 

 
Notice that the above equations are consistent in that 
 

 1 =  ∫
0

 2π pdf(n)dn   =  ∫
0

 2π [ Σi=16  pmf(n) δ(i-n)]dn  = Σi=16 pmf(n)  ∫
0

 2π  δ(i-n)]dn   

 
    = Σi=16 pmf(n) = 1 . 
 
The motivation for these names pdf and pmf comes from physics. One can have a continuous distribution 
of mass in some compressible fluid, say, where it would be called a mass density ρ. But in the physics of 
idealized point particles of mass mi, the mass is congealed at specific points in space. For a set of 
particles of mass mi at spatial locations ri one could still write a mass density ρ(r) as  
 
 ρ(r) = Σi mi δ(r-ri) 
 
and one sees the analogy with (G.1) above.  
 
Here then we have seen two "random variables" in action. One, n, is the discrete outcome of a die roll, the 
other θ is the continuous outcome of a spinner spin. Each of these is a real parameter and for each there 
exists an associated probability distribution, as plotted above. Thus, each of these parameters fulfills the 
requirements of our opening definition of a "random variable".  
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(b) What is a Random Variable ? Part II:  the Capital Letter Notation 
 
We shall continue to examine various experiments to see what new concepts appear.   
 
Consider experiment = coin toss with sample space S = {heads,tails} = possible outcomes. The new 
feature here is that the outcomes are not real numbers and therefore don't fit our requirement that a 
random variable be a real number. This is easily remedied by assigning real numbers to each outcome, 
such as heads → 1 and tails → 0.  If s is an element of the sample space S = {heads,tails}, then we can 
define a little function h = H(s) such that 1 = H(heads) and 0 = H(tails). In general this function is a 
mapping from the sample space S to the real numbers, so we can say H:S→R. In this situation, we can 
think of h as being a "random variable" as defined above. It is a real parameter and it has an associated 
probability distribution which in this case is a pmf since S is discrete. For a "loaded" coin we might have 
 

  Fig G.2 
 
We are now going to slightly alter our definition of a random variable so it is more precise. As a 
preliminary, forget probability and just consider some function y = f(x). In this equation, the object f is 
clearly a function, while the object y is a value that function can take. Thus, y and f are not the same 
thing. They are equal in the sense that y = f(x) for some x, but y and f belong to completely different 
classes of objects. Perhaps y is a real variable in R, whereas f is a mapping (function) from R to R. It is 
quite useful to have different symbols for y and f. If one were to write y = y(x), the reader would 
understand what was meant, but now y has two separate meanings ( function, and value of function). To 
maintain precision, it is better that these symbols be different. One choice is to represent the function f(x) 
as Y(x), so the function name is now Y, while y is a value the function Y can take. Then y = Y(x) and 
things are clear.  
 Now we return to h = H(s).  H is a function or mapping from S to R, whereas h is a real number. We 
would not in general say that h and H are the same object. For the coin toss experiment, it is really the 
function H that is the random variable, whereas h is a value that random variable can take. In our previous 
experiments with die and spinner, it happened that the function H was the identity function, so we didn't 
"see it" in the discussion. But still for the spinner, we would write θ = Θ(θ) and, as we set things up, if an 
arrow position s is in the range (0,2π), then we happen to have Θ(θ) = θ and Θ = 1. The function Θ would 
have been more visible had we perhaps taken arrow position in degrees and put θ in radians.  
 
 We shall now state a more complete definition of a random variable:   
 
First one must have a specific experiment E in mind which gets run many times, and on each run of the 
experiment some outcome S of interest takes a value sE in a sample space SE of possible outcomes for S. 
The random variable XE,S is a function which maps the sample space SE to the real axis, XE,S : SE → R 
so that XE,S(sE) = xE,S, where then xE,S is the real value which the random variable XE,S takes for a 
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particular outcome sE in SE. After the experiment is run many times, one can determine a probability 
distribution PE,S(xE,S) for this outcome S of this experiment E.  
 
 Here we have shown annoying subscripts just to stress that we have a specific experiment E and a 
specific outcome set S in mind. We now restate our definition of random variable without these annoying 
subscripts:   
 
First one must have a specific experiment in mind which gets run many times, and on each run of the 
experiment some outcome of interest takes a value s in a sample space S of possible outcomes. The 
random variable X is a function which maps the sample space S to the real axis, X : S → R so that X(s) 
= x, where then x is the real value which the random variable X takes for a particular outcome s in S. 
After the experiment is run many times, one can determine a probability distribution P(x) for this outcome 
of this experiment.  
 
 This P(x) may or may not be a "flat" distribution. If one thinks of a flat distribution as being the 
definition of a random distribution, one arrives at the famous statement that a random variable is neither a 
variable (it is a function) nor is it random (distribution can be non-flat). 
 What different name might one use for "random variable"? Perhaps a "probabilistic function" which 
maps the possibly non-numeric outcomes of an experiment to a real parameter, which parameter has some 
non-trivial probability distribution which can be observed by doing the experiment many times. The 
problem with this phrase is that it does not focus on that parameter which is the main item of interest, the 
variable of random variable. So we just learn to live with the phrase "random variable".  
 
For some general experiment, the outcomes are likely to be non-numerical in nature, and a function like 
H(s) will be required to map the outcomes onto the real number axis. For a discrete sample space, we 
might represent this situation as follows:  
 

     Fig G.3 
 
In this case, an event which is any subset of the outcomes in the sample space will map into some set of 
points on the real axis.  For a continuous sample space, the picture is a little different,  
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             Fig G.4 
 
The new feature here is a certain continuity requirement:  every interval of the random variable x (like the 
interval shown) must map back into some subset of the sample space. Since subsets are events, this means 
that every interval of the x axis must map back to some well-defined event. Going the other way, not 
every event (subset) maps into an interval of the x axis. The continuity idea is that if two points are close 
together on the real x axis, then they must be close together in the sample space. This in turn means that 
the sample space has to have some kind of metric to allow a notion of distance between two points. 
Furthermore, as the subset is expanded, the interval it maps to cannot becomes smaller!  
 
Having now discussed random variables, outcomes, experiments, sample spaces, and events, we are in a 
good position to review some general probability theory.  
 
(c) Basic Probability Theory 
 
In the above discussion, if we have random variables A,B,C.... , we can write a joint probability density 
function in this manner 
 
 pdf(A=a, B=b, C=c.....)         (G.2) 
 
where now we don't distinguish whether the various sample spaces are continuous or discrete, we just 
write anything as a pdf  (with the understanding of (G.1) above). The meaning here is that pdf(...) is the 
probability that random variable A has value a, while at the same time (the same experiment) random 
variable B has value b, and so on. For the continuous case, pdf(...) da db dc...  is the same probability but 
for the range da of a and db of b, etc.  
 
If all these random variables are statistically independent  (such as A = number of dust particles on your 
pillow and B = temperature at some location on Pluto), this joint probability distribution factors, 
 
  pdf(A=a,B=b,C=c.....)   = pdf(A=a) * pdf(B=b) * pdf(C=c)  ....    (G.3a) 
 
For two random variables A and B, one would have 
 
 pdf(X=x,Y=y) = pdf(X=x) * pdf(Y=y) .       (G.4a) 
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We shall often use the word independent to mean statistically independent.  
 
We now adopt some shorthand notations:  
 
 p(a,b,c....)  ≡  pdf(A=a,B=b,C=c.....)   = pdfABC...(a,b,c...)  = pABC..(a,b,c..) .  (G.5) 
 
When one sees p(2, -4, 0. 4...) one must remember that the arguments correspond to values of specific 
random variables, and if things become unclear, one must revert to the fuller notation. One trick is to use 
a parameter name that reminds the reader of the random variable name, such as a for A: p(a) = P(A=a).  
 In the shorthand notation we have 
 
 p(a,b,c...) = p(a)p(b)p(c).....  // N statistically independent random variables  (G.3b) 
 
 p(x,y) = p(x)p(y)   // 2 statistically independent random variables  (G.4b) 
 
Digression: One way to understand the concept of statistical independence is by the use of conditional 
probabilities. Consider: 
 
 pX( x | y ) = probability just for X that X = x given that Y = y 
 
which we compare to  
 
 pXY(x,y) = probability for X and Y that X = x and Y = y .  
 
The connection is given by, 
 
 pXY(x,y) = pX( x | y ) pY(y) . 
 
If X and Y are independent, then pX( x | y ) has no dependence on y, X knows nothing about Y, and in this 
case we have pX( x | y ) = pX(x) . This then yields the factored form 
 
 pXY(x,y) = pX(x) pY(y) . 
 
For three variables we can define  
 
 pX( x | y, z ) = probability just for X that X = x given that Y = y and Z = z 
 
and then (start on the right end when reading this)  
 
 pXYZ(x,y,z) = pX( x | y, z ) pY(y | z) pZ(z) . 
 
If X,Y,Z are statistically independent, then certainly X knows nothing about Y and Z, and Y knows 
nothing about Z, so then pX( x | y, z ) = pX(x) and pY(y | z) = pY(y) and then 
 
 pXYZ(x,y,z) = pX(x) pY(y) pZ(z) 
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giving the factored form. Often this discussion appears with the ∩ symbol replace our commas, and one 
can verify the various claims with Venn diagrams. We shall not digress more on this subject and shall 
take the factored form as our definition of statistical independence.  
  
We return now to  
  
 pXY(x,y) = pX(x)pY(y)  // 2 statistically independent random variables  (G.4b) 
 
If one regards pXY(x,y) as a function fy(x) for various fixed values of y, (G.4b) says that the shape of this 
function is not influenced by the values of y, only the overall scale of fy(x) is affected by y.  
 
After we define the correlation measure corr(X,Y) below, we will see that (G.4b) being true implies that 
corr(X,Y) = 0 which means X and Y are uncorrelated. This arrangement works only one way: 
 
 X,Y statistically independent  ⇒  X,Y uncorrelated.  
 
It is easy to find examples where X,Y are uncorrelated but are not independent, we shall look at an 
example below.  
 
Any pdf is normalized to 1 since the probability of all possible outcomes (mapped from sample spaces to 
the random variables)  is 1. Thus,  
 

 ∫∫....  p(x,y....) dx dy...   = 1 or Σx,y.... p(x,y....)   = 1  .   (G.6) 

 

An example is that ∫p(x)dx = 1 or Σxp(x) = 1. If x is discrete and y is continuous, Σx∫p(x,y)dy = 1, but 

we won't bother to show all such "mixed" cases below.  
 
In general, if p(a,b,c...) is some Nth order joint probability, one can find lower order probabilities by 
summing over some of the variables:   
 
Fact:  To obtain a lower-order joint probability from a higher-order one,  
 
 p(x,y,z...) = Σ'a,b,c...  p(a,b,c.....)        (G.7) 
 
Here {x,y,z...} is some subset of {a,b,c....} and the notation Σ'  means that we sum over all variables in 
{a,b,c.... } except  those in the subset  { x,y,z...} . One could state (G.7) in a set notation this way 
 
 p(S') = ΣS-S' p(S)  where S' ⊂ S       (G.8) 
 
Proof:  The proof is merely the observation that if we are only interested in {x,y,z...}, we go ahead and let 
all the other variables {a,b,c....} – {x,y,z...} take all possible values and we add up the probability of each 
of these cases to get its contribution to p(x,y,z...). This is just a case of adding probabilities of outcomes to 
get a total probability of interest.  
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Examples:   
 
 p(x) =  Σy p(x,y) 
 
 p(x) =  Σy,z p(x,y,z) 
 
 p(x,y) = Σz p(x,y,z) 
 
 p(x,y) = Σa,b,c...≠ x,y  p(a,b,c......)       (G.9) 
 
Before we can continue our little presentation, we need to state and prove an important theorem about 
random variables which are functions of other random variables. To this end, we must first digress on a 
set of math Lemmas.  
 
Some Math Lemmas 
 
Consider z = f(x,y) = f(r) where r = (x,y).  Here f is a "function" which means it is a single-valued 
function which means under the mapping f: R2→R, every vector r in the domain lands in some unique 
location in the range. It is possible and in fact likely that f will be a many-to-one function, meaning for a 
given z in the range, there might be several ri in the domain such that z = f(ri).  If the domain is discrete, 
then so is the range. We might have this situation:  
 

      
          domain Df      range Rf   Fig G.5 
 
We could then talk about Σx,y being the sum of all points r = (x,y) in the domain such that f(x,y) = z for 
some z in the range. We can exhaust all points in the range Rf by doing zi = f(ri) and letting ri exhaust 
all (x,y) in the domain Df. This is how we discover the extent of the range Rf.  
 We now make this claim, where we have in mind some unseen quantity being acted upon by both 
sides of the equation  (symbol ∋ means "such that")  
 

         (G.10) 
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Proof:  If on the left we first sum over the points (x,y) corresponding to z according to z = f(x,y), and then 
we sum over all z in the range of f, our sum includes every point (x,y) in Df exactly once. The double 
sum is simply a certain ordering of the total sum shown on the right. The same point (x,y) cannot show up 
twice in the double sum for two different values of z, because if it did, f(x,y) would map that point into 
those two z different values, but f is supposedly single-valued. Nor can any point (x,y) be omitted in the 
double sum on the left because the range Rf for z was created by exhausting all points (x,y) in Df, so any 
(x,y) in Df corresponds to some z in the range Rf.  
 
Now for a continuous domain Df, we might have 
 

         
      domain Df               range Rf   Fig G.6 
 
where now an entire continuous curve C (red) in the domain maps to some z in Rf. The equation of the 
red curve C is z = f(x,y) for some fixed value of z. The heavy curves including this red one are curves of 
constant z. We can imagine some other function s = g(x,y) whose curves of constant s form an orthogonal 
curvilinear coordinate system (right angles at any point) with the curves of z = f(x,y) = constant. The 
parameter s would then vary along each constant-z curve, marking off points along the curve. The 
analogous statement to the discrete statement made above is this (only a claim, we shall not prove it) 
 

         (G.11) 
 
where J is the Jacobian between coordinates (x,y) and (z,s). This is the same Jacobian idea that appears in 
taking (x,y) to polar coordinates (r,θ) where dxdy  = rdrdθ with J = r. We shall not pursue this Jacobian 
matter further other than to claim it is possible to find a g(x,y) that works and that certain technical issues 
arise concerning the reasonableness of the function f(x,y).  
 
Comment:  In order for the Jacobian to exist and be well-behaved, function f(x,y) must be continuous 
and differentiable (C1) in both variables, and the mapping between (x,y) and (z,s) must be essentially 
one- to- one (invertible) so that given (z,s) one can compute (x,y) and vice versa. 
 
Example: Suppose z = f(x,y) = 2x3 + 3y2 and we are interested in the curve C(z=2). This curve C is the 
intersection of the surfaces z =  2x3 + 3y2 (red) and z = 2 (gray), as illustrated here:  
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        Fig G.7 
 
If we had  z = f(x,y,w) so Z is a function of three random variables X,Y and W, then our two results 
above would become 

       (G.12) 
 
The first line seems straightforward, but the second is more complicated. Inside the square bracket we 
now have dS being a differential patch of area, and S(z) is a 2D surface in the (x,y,z) space on which z is 
a constant according to z = f(x,y,w).  For example, in spherical coordinates we write r = x2+y2+z2 and a 
surface of constant r is a spherical shell. Now we have to imagine two other coordinates s1 = g(x,y,w) and 
s2 = g(x,y,w) so that (z,s1,s2) form an orthogonal coordinate system and then the new J is the Jacobian 
between (x,y,w) and (z,s1,s2).  
 In a more economical notation, and changing to z = f(a,b,c) we can write (G.10) and (G.11) as  
 
 Σz [ Σzx,y] = Σx,y          (G.13a) 

 ∫dz [ ∫C(z) ds J ] = ∫∫ da db        (G.13b) 

 
and then for (G.9),  
 
 Σz [ Σza,b,c ]  = Σa,b,c         (G.14a) 

 ∫dz [ ∫S(z)dS J ]  = ∫∫∫da db dc        (G.14b) 

 
where Σza,b,c indicates that the sum is restricted to those (a,b,c) values for which f(a,b,c) = z.  
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 Hopefully it is clear how this general idea can be extended to Z = f(A,B,C,D....) where random 
variable Z is a function of some arbitrary number N of random variables A,B,C,D... .  
 
Fact: One can organize a total sum/integral over the space of N random variables in this manner:  
 
  Σz [ Σza,b,c... ]  =  Σa,b,c...         (G.15a) 
 

  ∫ dz  [ ∫S(z) dS J ]  = ∫∫....∫ da db dc ......         (G.15b) 

 
In the first line, Σz means the sum is constrained to be only over those a,b,c... such that f(a,b,c...) = z. In 
the second line, S(z) is an N-1 dimensional surface located within the N dimensional space of (a,b,c....), 
which surface is defined by f(a,b,c....) = z .  
 
With these Lemmas out of the way, we can now resume our basic probability theory review.  
 
Fact:  Any reasonable real function of random variables is a random variable.    (G.16) 
 
Proof:  First consider Z = f(X,Y), where X and Y are random variables. If x is an allowed value of X, and 
y of Y, then the allowed values of Z will be z = f(x,y). Since x and y must be real, and since f is a real 
function, the allowed values of z are real, one of the requirements for Z to be a random variable. At our 
level of rigor, it only remains to find the probability distribution associated with Z. We claim this is given 
by,  
 
 p(z)  = Σzx,y p(x,y)          (G.17a) 
 

 p(z) = ∫C(z) ds J p(x(s,z),y(s,z))  = ∫C(z) J p(x,y)  .      (G.17b) 

 
Looking at (G.17a), for a given value of z, in z = f(x,y) only certain x and y values are possible. Thus, 
only these values of x and y appearing in p(x,y) can contribute to p(z). Other values of x and y will 
contribute to p(z') for some other z'. We can check normalization as follows using (G.13a) 
 
 Σz p(z) = Σz{ [Σzx,y] p(x,y)}  = {Σz [Σzx,y]} p(x,y)  = Σx,y p(x,y)  = 1 . 
 
What is the sample space for Z ?  We can select one according to the following plan. Let RA and RB be the 
total sets of values of parameters a and b. Then RZ = f(RA,RB) treated as an equation of sets tells us the set 
RZ. We could then just select the sample space for Z to be SZ = RZ  which would be a numerical sample 
space.  
 
More generally, for Z = f(A,B,C....) with N arguments, the distribution for Z is given by 
 
 p(z)  = Σza,b,c... p(a,b,c,....)        (G.18a) 
 

 p(z) = ∫C(z) dS J p(a,b,c....)  a = a(z, s1, s2..... sN-1), etc.    (G.18b) 
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The function f must be C1 in all its arguments (as noted above) and must be such that the Jacobian J is 
well behaved (finite and non-zero) over the entire regions of interest in both spaces (a,b,c...) and 
(z,s1,s2...). This is why (G.16) contains the word "reasonable".       QED 
 
Definition : The expected value of a random variable X is given by 
 

 E(X)  ≡  ∫x p(x) dx      or     E(X)  ≡  Σx x p(x)        = the mean, often called μX   (G.19) 

 
Comment 1: The expected value is sometimes called the expectation or the expectation value. In quantum 
mechanics the phrase expectation value predominates, but elsewhere it is the expected value. In quantum 
mechanics, all physical observables are random variables (position, momentum, energy, etc) except in 
quantum states which are eigenstates of the observable's quantum operator, in which case the observable 
takes a fixed value.  
 
Comment 2:  In (G.19) above for the mean (and generally below), we could write E(X) ≡ Σi xi p(xi) 
where the xi are the possible values that random variable X can take. But in this section we use E(X) ≡  
Σx x p(x) where then x itself represents the values X can take. This notation puts the summation form on 

a little more equal footing with the integral form ∫x p(x) dx .  

  

Fact:  If Z = f(X,Y), the expected value of Z is given by      (G.20) 
 
 E(Z) = Σz z p(z) = Σx,y f(x,y) p(x,y)    discrete 
or 

 E(Z) = ∫ z p(z) dz  = ∫∫ f(x,y) p(x,y) dx dy .  continuous 

 
Proof:   For the discrete case 
 
 E(z) = Σz z p(z)  // by the definition of an expected value of a random variable 
 
  = Σz z [ Σzx,y p(x,y)]   // by (G.17a)  
 
  = Σz  [ Σzx,y] f(x,y) p(x,y) // move the x,y sum to the left, and replace z = f(x,y) 
 
  = Σx,y f(x,y) p(x,y)  // by (G.13a) 
 
For the continuous case 

 E(Z) = ∫ z p(z) dz  = ∫dz z [∫C(z)ds J p(x,y) ] //  by (G.17b) 

  =  ∫dz [∫C(z)ds J ] f(x,y) p(x,y)  // move ∫ds to the left, replace z = f(x,y) 

  = ∫∫ dxdy  f(x,y) p(x,y)   // by (G.13b)    QED 
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We now generalize this fact to obtain:  
 
Theorem:  If Q = f(X,Y,Z....) where X,Y,Z... are random variables, and if f is a reasonable real valued 
function, then  
 
(1)   Q is a random variable and 
 
(2)    E(f(X,Y,Z....))  = Σx,y,z... f(x,y,z....) p(x,y,z....)   

  E(f(X,Y,Z....))  = ∫∫∫...dxdydz....  f(x,y,z....) p(x,y,z....)    (G.21) 

 
Proof:  This is a straightforward generalization (G.20) based on (G.18) and (G.15). One just mimics the 
proof of (G.20).  
 
Special cases:  
 
 E(f(X))  = Σx f(x) p(x) 

 E(f(X))  = ∫dx f(x) p(x)          (G.22) 

  
 E(f(X,Y))  = Σx,y f(x,y) p(x,y) 

 E(f(X,Y))  = ∫∫dx dy f(x,y) p(x,y)        (G.23) 

 
Next we define the covariance of X and Y, and evaluate it using (G.23),  
 
 cov(X,Y)  ≡ E((X-μx)(Y-μy))   = Σx,y (x-μx) (y-μy) p(x,y) 

                  or ∫∫ (x-μx) (y-μy) p(x,y) dx dy    (G.24a) 

Notice that 
 
 cov(X,Y)  ≡ E(XY) - μxE(Y)- μyE(x) + μxμy = E(XY) - μxμy -  μyμx+ μxμy  = E(XY) - μxμy 
 

so we have this alternate method of computing covariance 
 
 cov(X,Y)  = E(XY) - μxμy .        (G.24b)  
 
In passing, notice that cov(X,-Y) = – cov(X,Y) since E(XY) negates as does μx.  
 
The variance of X is the covariance of X with itself and is the square of the standard deviation σ(X),   
 
 var(X) ≡  [σ(X)]2  = cov(X,X)  = E((X-μx)(X-μx))  = E((X-μx)2)   

          =  Σx (x-μx)2 p(x)    or    ∫ (x-μx)2 p(x) dx      (G.25) 
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where we use (G.22) with f(X) = (X-μx)2.  
 
Finally, the correlation of X and Y is the covariance normalized by the two standard deviations,  
 
 corr(X,Y)   ≡  cov(X,Y) / [σ(X) σ(Y) ]  .       (G.26) 
 
The most correlated that X and Y could possibly be occurs when X = Y in which case corr(X,Y) = +1. 
The most anticorrelated they can be occurs when X = -Y in which case corr(X,Y) = -1. For general X and 
Y, we have -1 ≤ corr(X,Y) ≤ 1.  
 
Example of uncorrelated but dependent. Let X = Z and Y = Z2. Let p(z) = an even function of z, like a 
Gaussian. Assume for Z that μz = 0. It seems fairly clear that X and Y are not independent, they know a 
lot about each other, they are dependent and p(z,z2) ≠ p(z)p(z2). Nevertheless, the correlation is 0 as we 
now show:  ( cov = 0 => corr = 0 )  
 

 cov(X,Y) = E(XY) - μxμY   = E(Z3) - μ(Z) μ(Z2)  = E(Z3) =  ∫
-∞

 ∞  dz p(z) z3  =  0 .  

 
Just to get the following delta forms on the table, we now present an alternate derivation (G.25). One can 
take the limit of a joint distribution of random variables as two of the variables become the same. For 
example, for continuous and discrete (where we now use the alternate indexed notation with xi),  
 
 limX→Y p(x,y) = p(x)δ(x-y)   limX→Y p(xi,yi) = p(xi)δi,j  .   (G.27) 
 
The reason is that if X and Y are the same random variable, they cannot take different values. If X,Y and 
Z are all the same variable, then we would have (dropping the limit notation) 
 
 p(x,y,z) = p(x)δ(x-y)δ(x-z)  or p(xi,yj,zk) = p(xi) δi,j δi,k    (G.28) 
 
Note that  δ(x-y)δ(x-z)  = δ(x-y)δ(y-z)  = δ(x-z)δ(y-z)  and δi,j δi,k = δi,j δj,k = δi,k δj,k .  
 
We can apply (G.27) to obtain an alternate evaluation of the variance,  
 

 var(X) ≡  [σ(X)]2 =  limX→Y cov(X,Y)    = limX→Y [  ∫∫ (x-μx) (y-μY) p(x,y) dx dy ] (G.29) 

 

            = ∫∫ (x-μx) (y-μx) p(x)δ(x-y) dx dy 

 

             = ∫ (x-μx)2 p(x) dx or Σi (xi -μx)2 p(xi)  /   Σx (x -μx)2 p(x) 

 
which is the same as (G.25).  
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Notice that the variance could in theory vanish if p(x) = δ(x - x1) so that the entire pdf is concentrated at a 
single value and then μX = x1 :  
 

 var(X) = ∫ (x-μx)2 p(x) dx  = ∫ (x-μx)2 δ(x - x1) dx   = (x1-μx)2  = (x1- x1)2 = 0  = σ(X)  . 

 
But then X is not a random variable since it's value is precisely determined as x1. A pdf of this form is not 
very interesting and normally one has σ(X) > 0.      
 
Fact:   var(X) = σ2(X) = E(X2) - {E(X)}2  =  E(X2) -  μx2     (G.30) 
 

Proof:   E(X2) - {E(X)}2  = ∫x 2p(x) dx  - {∫x p(x) dx} 2   =  ∫x 2p(x) dx - μx2 

 

   var(X) = ∫ (x-μx)2 p(x) dx  = ∫x 2p(x) dx -2μx∫x p(x) dx + μx2∫ p(x) dx 

 

        = ∫x 2p(x) dx - 2μx μx + μx2 1 =  ∫x 2p(x) dx  - μx2 .  QED 

 
Fact:  If X and Y are statistically independent random variables, then    (G.31) 
 (a) p(x,y) = p(x)p(y) 
 (b) E(XY)  = E(X)E(Y) 
 (c) cov(X,Y) = 0   
 (d) corr(X,Y) = 0 
 (e) X and Y are uncorrelated 
 
Proof:  
 
(a) follows from our definition of statistical independence (G.3a) or (G.3b).  
 

(b)  E(XY) = ∫∫ x y p(x,y) dx dy  = ∫∫ x y p(x)p(y) dx dy  = [∫x p(x) dx] [∫y p(y) dy]  = E(X)E(Y) . 

 
(c)  cov(X,Y)  ≡ E(XY) - μxμy = E(X)E(Y) - μxμy = μxμy - μxμy  = 0 
 
(d) corr(X,Y)   ≡  cov(X,Y) / [σ(X) σ(Y) ]   = 0 / [σ(X) σ(Y) ] = 0 
 
(e) This is the same as (d), just stated in words       QED 
 
Fact: If {X,Y} are independent, and if {Y,Z} are independent, {X,Z} may be dependent and therefore be 
correlated.            (G.32) 
 
Proof: Knowing that p(x,y) = p(x)p(y) and p(y,z) = p(y)p(z) tells us nothing about p(x,z). It is easy to 
think of trivial examples of this fact. Maybe X = Z so corr(X,Z) = var(X)/ [σ(X)]2  = 1  ≠ 0.  
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Fact:  If {X,Y} and {Y,Z} and {X,Z} are all independent pairs, X Y and Z might not be independent.   
             (G.33) 
 
Proof:  Knowing about the uncorrelated pairs says nothing about p(x,y,z).  That is to say, knowing that 
p(x,y) = p(x)p(y) and p(y,z) = p(y)p(z) does not imply that p(x,y,z)  = p(x)p(y)p(z).  
 
This concludes our brief review of probability theory, and we now continue in our examination of 
experiments associated with random variables.  
 
(d) Ensemble Experiments 
 
We consider now a new kind of "experiment". We acquire N dice which we shall refer to as an ensemble 
of dice. We assume they are all "loaded" differently, perhaps with implanted weights. For each die, we 
perform the single-roll experiment described above for which the outcome lies in the sample space S = 
{1,2,3,4,5,6}. After doing these N experiments, the N dice are left lying on the green felt of a craps table, 
each in its final experimental state. We then survey all N dice and take note of each one's face-up number, 
and from that data we construct a distribution. Since these dice are all slightly different, the distribution 
will likely differ from that shown earlier in Fig G.1. Perhaps we get this: 
 

        Fig G.8 
 
As a computer algorithm, here is this new "ensemble experiment":  
 
 Acquire an ensemble of N dice (perhaps each is loaded differently)  
 For each die in the ensemble, carry out the single die experiment with outcome in S = {1,2,3,4,5,6}. 
 When the experiments are done, survey the resulting data and construct a distribution.  
 
If the dice were identical, then this ensemble experiment would be the same as just sequentially rolling 
the same die N times and writing down the outcome of each roll. But the main point is that we assume the 
dice are not all the same.  
 
Now we carry out an analogous ensemble experiment : 
 
 Acquire an ensemble of N babies (they are likely all different)  
 For each baby in the ensemble, carry out some experiment with outcome in some sample space S.  
 When the experiments are done, survey the resulting data and construct a distribution.  
 
The experiment we have in mind is simply to let each baby grow up into an adult and then we treat some 
parameter of that adult as our random variable. Adults generally don't have face-up numbers, but they do 
have other "parameters" such as mass, height, and number of children.  For each adult, the "experiment" 
was "growing up", analogous to rolling one die in our previous ensemble experiment. It is convenient to 
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let nature do these experiments for us, so in practice we just assemble some group of adults into our 
ensemble, and then we are left with just the last item above : 
 
 When the experiments are done, survey the resulting data and construct a distribution.  
 
Here for example we carry out three ensemble experiments with the same ensemble of people. Each 
ensemble experiment uses a different sample space:  weight, height, number of children. and each deals 
with a different random variable: W, H and N. For each experiment we obtain a distribution as shown:   
 

 
             Fig G.9 
 
In all three experiments, the outcomes are real numbers, so there is no need for any functions to translate 
from non-numerical outcomes to real numbers, as we required in for the {heads,tails} sample space. 
These experiments are all analyzing historical data, nor current "chance events" like rolling dice.  
 
In the above scenario, sometimes the ensemble of people is called "the sample space" which is then a 
totally different meaning of that phrase, so we won't use it.  
 
(e) Experiments rolling two dice at the same time 
 
In the next set of experiments, we roll two differently weighted dice at the same time and examine 
particular outcomes (that is to say, we examine particular random variables, each taking real values in its 
numerical sample space). These two dice are not only weighted differently, but the embedded weights are 
magnets, which cause the two die to interact with each other during a roll. Here we get to apply various 
facts from the brief review of probability theory of section (c) above.  
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 In Experiment #1 we just look at the face up number of the X die and that number is x. The sample 
space as usual is S = {1,2,3,4,5,6} and there will be some pmfX(x). Review: In this notation, the subscript 
indicates the random variable X, and the argument x is a value that random variable can take. Another 
notation is pmf(X = x), and the most compact notation is that of (G.5) which is just p(x) where one must 
remember what the random variable is. It is suggested by the letter used as argument: p(x)= pmfX(x) = 
pmf(X = x). 
 In Experiment #2 we do this for the Y die. It has the same sample space, but a different p(y) = 
pmfY(y).  
 In Experiment #3 we look at z = x+y with its random variable Z = X + Y.  The sum of two random 
variables is a random variable according to (G.16) or (G.21). The numerical sample space for this third 
experiment is {2,3..., 11,12}, since there are no other possible outcomes for the sum of two face-up 
numbers on two dice. According to (G.17a), the probability of Z taking value z in this sample space is 
given by pmfZ(z)  =  Σzx,y pXY(x,y), or in compact notation, p(z) = Σzx,y p(x,y),  where the sum includes 
only those x,y values such that x + y = the z inside p(z) on the left. If the two die were differently 
weighted but contained no magnets, we would have p(z) = Σzx,y pX(x)pY(y) since the two dice are 
"independent" (hence "uncorrelated") as in (G.31). If the two dice were identical, then p(z) = Σzx,y 
pX(x)pX(y) where the two pmf's are the same. If the two dice are "fair dice" (unloaded), then pmfX(x) = 
pX(x) = 1/6 for any x and then we find that p(z) = Σzx,y (1/6)(1/6)  = (1/36) Σzx,y 1. We then have a 
classic dice problem where we can enumerate the terms in the sum Σzx,y 1 as follows 
 
 z    Σzx,y 1     

  2  1,1 = 1 
  3  1,2 + 2,1 = 2 
  4  1,3 + 3,1 + 2,2 = 3 
  ... 
  7  1,6 + 6,1 + 5,2 + 2,5 + 3,4 + 4,3 = 6 
  ... 
  12  6,6 = 1 
 
Below,  pmfX(x) is for Experiment #1, and pmfZ(z) for Experiment #3. In each experiment, we roll a pair 
of identical fair dice many times and obtain these distributions.  
 

 
 
                   Fig G.10 
 
We now do a few quick hand calculations to exercise some of our basic probability facts. Notice ahead of 
time that 
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 Σx 1  = 6 
 Σx x = (1 + 2 + 3 + 4 + 5 + 6)  = 21 
 Σx x2 = (12 + 22 + 32 + 42 + 52 + 62)  = 91 . 
 
The expected value of Z for Experiment #3 is given by (G.23),  
 
 E(Z) = E(X+Y) = Σx,y (x+y) p(x,y) . 
 
In the case of Fig G.10 where p(x,y) = [p(x)]2 = (1/6)2 = (1/36) we have 
 
 E(Z) =  (1/36) Σx,y(x+y)  = (1/36) [ (Σx x)(Σy1) +  (Σx 1)(Σyy) ] = (1/18) (Σx x)(Σy1) 
 
  =  (1/18) (21) (6) = (1/3)(21) = 7  = μZ 
 

in agreement with the symmetric distribution on the right in Fig G.10. Next we compute,  
 
 E(Z2) = Σx,y (x+y)2 p(x,y)   = (1/36) Σx,y [ x2 + y2 + 2xy ] 
 
 = (1/36) [ 2 (Σxx2)(Σy1) + 2 (Σxx)2 ]  = (1/18) [91* 6 + 212]  = 329/6   = 54.83. 
 
The variance and standard deviation are then given by (G.30).  
 
 var(Z) = E(Z2) - {E(Z)}2  = 329/6 – 49  = 35/6   = 5.833 
 σ(Z) = 35/6  = 2.415         (G.34) 
 
This last result seems in line with a visual inspection of Fig G.10.  
 
Finally in Experiment #4 we consider the outcome z = x*y = xy. Things are similar to the above, but 
now the notation Σzx,y means the sum over x,y values such that the product of x and y is z. In the context 
of (G.23), we now have f = xy whereas in experiment #3 we had f = x+y. We could of course study the 
situation with any reasonable function f.  For f (x,y) = xy we can write:  
 
 pmfZ(z)  = Σzx,y pmfXY(x,y)      dice are different and weighted with magnets 
       
 pmfZ(z)  = Σzx,y pmfX(x) * pmfY(y)   dice are different but no magnets 
        
 pmfZ(z)  = Σzx,y pmfX(x) * pmfX(y)   dice are identical 
 
 pmfZ(z)  = Σzx,y (1/6) * (1/6) = (1/36) Σzx,y 1 dice are identical and "fair" 
 
For this Experiment # 4 the sample space is all possible products S = {1, 2, 3......36} with certain values 
missing. For "identical and fair" we make our list using our new meaning of Σzx,y :  
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 z    Σzx,y 1     

  1  1,1 = 1 
  2  1,2 + 2,1 = 2 
  3  1,3 + 3,1 = 2 
  4  1,4 + 4,1 + 2,2 = 3 
  5  1,5 + 5,1 = 2 
  6   1,6 + 6,1 + 2,3 + 3,2 = 4 
  7  = 0 
  8  2,4 + 4,2 = 2 
  ... 
  36  6,6 = 1 
 
We ask Maple to create pmfZ(z) for this Experiment #4:  
 

 
 

 
 
                    Fig G.11 
We then repeat the calculations done for Experiment #3:   
 
 E(Z) = E(XY) = Σx,y (xy) p(x,y)  = (1/36) Σx,y (xy)  = (1/36)[ (Σxx)2 = 212/36 = 49/4 = 12.25 = μZ 
 

 E(Z2) = Σx,y (xy)2 p(x,y)  =  (1/36) Σx,y x2y2 =  (1/36) [ (Σxx2)2] = (1/36)(91)2 = 8281/36 = 230.03 
 
 var(Z) = E(Z2) - [E(Z)]2  =  8281/36  -  (49/4)2  = 11515/144 = 79.97 
 
 σ(Z) = 8.942     // standard deviation       (G.35) 
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(f) Experimental determination of discrete distribution functions 
 
In practice, one has some list of experimental results (outcomes converted to real numbers if not already 
real numbers) and one puts the results into "bins" to obtain a distribution. Here we want to be more 
explicit about what this means.  
 
For a single variable x which is the face-up value of a die, here is how we would compute p(x) after 
collecting data rolling the die J times :  
 

 
 
which we could plot as a bar chart of the type shown in Fig G.1.  
 Symbolically we might write this as 
 
 p(n) = (1/J) Σj=1J ( xj = n )  n = 1,2,3,4,5,6  .     (G.36) 
 
The idea is that for each n, we count the number of times that ( xj = n ) is true.  
 
For two variables, things are a bit more complicated. Now we have a set of J pairs {xi,yi} as our 
collection of data, so that 
 
 p(n,m) =  (1/J) Σj=1J ( [xi,yi] = [n,m] )  n,m = 1,2,3,4,5,6   (G.37) 
 
where [...] refers to an ordered sequence. Another way to write this would be 
 
 p(n,m) =  (1/J) Σj=1J  [(n = xi) and (m = xj)] n,m = 1,2,3,4,5,6   (G.38) 
 
Here is a sample Maple program to carry this out 
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The resulting p(n,m) can be visualized as a 3D bar chart 
 

 
 

          Fig G.12 
 
A distribution function like p(a,b,c,d,e) is a 6D bar chart, not easy to display.  
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(g) Experiments with Sequences of Pulse Train Amplitudes 
 
Our pulse trains have a set of amplitudes yn which form a sequence. If the sequence has N elements, then 
a sequence can be written [y1, y2.....yN]. When many pulse trains are generated in some line code, one 
finds that the values of yn in position n of the sequence can vary, and that there is some probability 
distribution associated with the parameter yn. Thus, the position n in the pulse train or sequence is 
associated with a random variable we must call Yn which takes values yn.  
 Here is the Experiment. We have an Apparatus which generates sequences of length N according to 
some set of rules implemented within the Apparatus (perhaps these are the rules for generating AMI 
linecode sequences, and the AMI encoder inputs random input streams). Every sequence it generates is 
"legal" according to its rules. Earlier we discussed an ensemble experiment in which M dice were rolled 
one at a time and were left on the craps table for study and from what we saw on the table, we were able 
to construct a distribution function. The ensemble was M dice. In our current ensemble experiment, we 
let the Apparatus crank away and generate an ensemble of M sequences each of length N, and these M 
sequences are left sitting on the same craps table for us to inspect. From this data we could then construct 
any desired statistical expected value or distribution function.  
 The notation Yn leads to some possible  confusion. When we had a random variable H which took 
values h, we might have enumerated the set of h values of the sample space as hi.  To maintain clarity, if 
we have random variable Yn which takes values yn, we should enumerate those values as (yn)i. Here, yn 
is the name of a variable, just as h was the name of a variable. Thus, to write down a specific sequence "i" 
we really should say 
 
 [(y1)i, (y2)i.....(yN)i]  = sequence "i"   
or             (G.39) 
 [y1(i), y2(i)..... y2(i)]  = sequence "i"     
 
where  (y2)i = y2(i) is some specific symbol value like "5". We used the latter notation when talking 
about an ensemble of pulse trains in Section 35. 
 In random variable discussions (like ours above in section (c)) one usually reads about "two random 
variables X and Y" with equations like these (written in discrete notation)  
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 μx  = E(X) = Σk xk px(xk)   =  (1/I) Σi=1I x(i)  ≡ <x> 
 μy  = E(Y) = Σk yk py(yk)   =  (1/I) Σi=1I y(i)  ≡ <y>      
  
 E(XY) = ΣkΣj xk yj pxy(xk,yj) = (1/I) Σi=1I x(i) y(i)  ≡ <xy> 
 pxy(xk,yj)  = px(xk) py(yj)   // independent  
 E(XY) = E(X)E(Y) .   // independent  
 
 cov(X,Y) = E( [X - μx] [Y - μy] ) = ΣkΣj (xk - μx) (yj- μy) pxy(xk,yj) 
           =  (1/I) Σi=1I (x(i)- μx) (y(i)- μy)     = E(XY) - μx μy  
  
 var(X) ≡ σx2 ≡  cov(X,X)  = E(X2) - μx2 

 
 corr(X,Y) = cov(X,Y) / [σ(X)σ(Y) 
 
For the pulse train application, we have a random variable Yn for each position in a sequence or pulse 
train, so the idea is to think of X = Yn and Y = Ym and rewrite equations like those above in some 
notation that is unambiguous:  
 
 μYm  = E(Ym) = Σk ym(k) pYm(ym(k))  =  (1/I) Σi=1I ym(i)  = <ym> 
 μYn  = E(Yn) = Σk yn(k) pYn(yn(k))  =  (1/I) Σi=1I yn(i) = <yn>     
 
 E(YmYn) = ΣkΣj ym(k) yn(j) pYmYn(ym(k), yn(j)) = (1/I) Σi=1I ym(i) yn(i) = <ymyn>   
 pYmYn(ym(k), yn(j))  = pYm(ym(k)) pYn(yn(j))  // independent  
 E(YmYn) = E(Ym) E(Yn)  or   <ymyn> = <ym><yn>  // independent  
 
 cov(Ym, Yn) = E( [Ym-μYm] [Yn-μYn] ) = ΣkΣj (ym(k)- μYm) (yn(j)- μYn) pYmYn(ym(k), yn(j)) 
     =  (1/I) Σi=1I (ym(i) - μYm) (yn(i)- μYn)  = E(YmYn) - μYm μYn 
 
 var(Ym) ≡ σYm2 ≡  cov(Ym, Ym)  = E(Ym

2) - μYm2  = <ym2 > -  μYm2     
 
 corr(Ym, Yn) = cov(Ym, Yn) / [σ(Ym)σ(Yn)]   
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Detailed Summary of this Document 
 
A brief summary may be found in the opening section before Chapter 1. The logical flow of the document 
is fairly complicated because so many interrelated topics are addressed, and because everything is derived 
from scratch for the reader to see. Hopefully this 12-page detailed summary can provide an intermediate 
level "map" of what is going on in the document.  
____________________________________________________________________________________ 
 
Chapter 1: The Fourier Integral Transform and Related Topics ( 34 p) 
 
Chapter 1 develops the basic theory of the Fourier Integral Transform and its Sine and Cosine cousins. 
This Chapter forms the underpinning of all subsequent Chapters. The Convolution Theorem receives 
special attention. The connection is made between the Laplace Transform and the "generalized" Fourier 
Transform applied to causal functions. Various "rules" are derived, and a connection is made between 
filter spectra and time-domain Green's Functions.  
 Section 1 introduces the Fourier Integral Transform, which in our notation appears as 
 

 X(ω) =  ∫
-∞

 ∞ dt x(t) e-iωt   projection = transform    (1.1) 

 x(t) = (1/2π) ∫
-∞

 ∞ dω X(ω) e+iωt ,  expansion = inverse transform   (1.2) 

 
and discusses restrictions on functions for which the transform applies and is meaningful. The notions of 
a "pulse" and a "pulse train" are mentioned in passing. The connection is made between the Fourier 
Integral Transform and the Fourier Sine and Cosine Integral Transforms. This relationship provides a 
method of using large published tables of Sine and Cosine transforms to obtain Fourier transforms.  
 Section 2 provides a traditional arm-waving proof of the Fourier Transform, while a more substantial 
proof using bare-bones distribution theory is presented in Appendix A. The Fourier Transform is 
discussed as a particular instance of Sturm-Liouville theory and the important claim is made that the 
exponential functions form a complete orthogonal basis on the interval (-∞,∞).  
 Section 3 derives the Convolution Theorem,  
 

 a(t) =  ∫
-∞

 ∞  dt' b(t-t')c(t')  ⇔ A(ω) = B(ω) C(ω)    (3.6) 

 
with comments about dimensions of the various functions, integral operators, diagonalization, and the 
generalization to Fourier analysis on continuous groups.  
 Section 4 essentially applies the Convolution Theorem to obtain the theory of filters and their transfer 
functions in the ω domain. The connection is made between the time-domain differential equation 
describing a filter and the Green's Function or propagator which is seen to be the response of the filter to a 
time domain δ impulse. A simple RC filter is treated in detail, then a second example is the same filter in 
the limit that RC is very large.  
 Section 5 discusses the set of convention choices we made in stating the Fourier Integral Transform, 
and why those choices were made:  sign of the exponential phase, i versus j,  and allocation of the 2π. 
 Section 6 presents a version of the Fourier Transform and Inversion which we loosely refer to as "the 
generalized Fourier Transform". In the inversion formula, the ω contour is displaced in such a way as to 
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increase the size of the class of causal functions for which Fourier Transforms exist. The main feature 
here is the analytic continuation of a spectrum X(ω) off the real axis in the complex ω plane. When the 
variable substitution s ≡ iω is made, the generalized Fourier Transform applied to causal functions 
becomes the traditional Laplace Transform,  
 
 X(s)  ≡  L[x(t), s]  ≡  X(s/i)         (6.8) 

 X(s) =  ∫
0

 ∞ dt x(t) e-st         (6.9) 

 x(t) = (1/2πi)  ∫c-i∞
 c+i∞ ds X(s) e+is         (6.10) 

  
 Section 7 states various reflection rules involving the Fourier transform and defines a Hermitian 
function.  
 Section 8 presents several simple examples of Fourier transforms which show how violation of the 
Fourier requirements causes transforms to be distributions instead of functions. The last example 
computes the spectrum of the Heaviside step function θ(t) (a distribution) and briefly introduces the 
notions of principal part integration and spectra presented in the form of limits. Details appear in 
Appendix C.  
 Section 9 considers a simple box-shaped x(t) and its Fourier transform X(ω). This particular example 
plays a major role in many later Sections.  
 Section 10 derives the various Parseval's Formulas and shows how one of these formulas relates to 
the total energy in a pulse.  
 Section 11 derives the differentiation rule dx(t)/dt ↔ [iωX(ω)] and presents a few examples.  
 Section 12 derives the time translation rule x(t - t1)  ↔ X(ω) e-iωt.  
 Section 13 derives these two "exponential sum rules",  
 

 ∑
n = -∞

∞
  eink  = ∑

m = -∞

∞
  2πδ(k - 2πm) -∞  < k < ∞      (13.2) 

 ∑
n = -N

N
   eink   = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }   ≡  2π δ5(k,N)   -∞  < k < ∞  (13.3) 

 
which are explored in more detail in Appendix A. These rules are important tools used later in processing 
expressions involving the power spectra of pulse trains.  
____________________________________________________________________________________ 
 
Chapter 2: Pulse Trains and the Fourier Series Connection (17 p) 
 
Chapter 2 examines the Fourier Transform spectrum of a simple pulse train formed from a general pulse 
shape. Consideration of pulse trains of infinite length leads to a derivation of the Fourier Series 
Transform. The chapter concludes with a discussion of sample pulse trains formed from box and bi-phase 
pulses.  
 Section 14 computes the Fourier Transform spectrum of a simple pulse train (yn = 1).  
 Subsection (a) does this for an infinite pulse train. Although the spectrum of xpulse(t) is continuous, 
that of the pulse train is entirely discrete and consists of a set of delta function spectral lines. 
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 Subsection (b) repeats the calculation for a finite simple pulse train, and this time the spectrum is 
found to be continuous. One can see exactly how this spectrum approaches the delta function lines as the 
length of the pulse train becomes infinite.  
 Section 15 in effect derives the traditional Fourier Series Transform from the Fourier Integral 
Transform of Chapter 1.  
 Section 16 obtains the spectrum of an infinite simple pulse train constructed from identical box pulses 
of width τ with rising edges separated by T1. As noted above, the spectrum is entirely discrete.  
 Section 17 develops some graphical aids to help understand pulse train spectra. The discrete delta 
function spikes track a certain envelope function which is in fact the pulse spectrum |Xpulse(ω)|. In 
certain simple cases, some of the delta spikes are missing because these spikes align with zeros of the 
pulse spectrum.  
 Section 18 discusses superposing a negative DC offset onto a positive box pulse train.  
 Section 19 constructs pulse trains using a certain "biphase pulse" instead of the box pulse. The 
spectra of these two pulse train types are compared. In a certain limit, the two become the same.  
____________________________________________________________________________________ 
 
Chapter 3: Sampled Signals and Digital Transforms (50 p) 
 
Chapter 3 deals with various digital forms of the Fourier Transform and their corresponding convolution 
theorems and applies these concepts to amplitude-modulated pulse trains (PAM signals) and to digital 
filters. Topics include image spectra, aliasing and Nyquist rate, group delay, FIR and IIR filters, poles, 
and impulse response. The first digital transform is called the Digital Fourier Transform which is an ω-
domain version of the Z Transform whose variable is z = eiωΔt . The Z Transform and Discrete Fourier 
Transforms are then addressed for both periodic and aperiodic signals. A recurring example is a simple 
RC filter section.  
 
Section 20 considers an amplitude-modulated pulse train x(t) = Σn y(t) T1δ(t - nT1). The spectrum of the 
pulse train is found to be X(ω) = Σm Y(ω - mω1), and image spectra arrive on the scene. The notions of 
aliasing and the Nyquist rate are described with some traditional drawings.  
 
Section 21 addresses two filter topics: digital filter image spectra, and analog filter group delay.  
 Subsection (a) considers a digital filter as an approximation to a standard "LIT" analog filter. What 
happens to the convolution theorem in this approximation? The answer is given in (21.13) and we find 
that such a digital filter has image spectra. The notion of aliasing is illustrated in Fig 21.1.   
 Subsection (b) shows that, when a narrow pulse passes through an analog bandpass filter, it 
experiences group delay τd = dφ/dω where φ is the filter phase. It then follows that filters with linear 
phase have a constant group delay, which is desirable to maintain the fidelity of pulses passing through 
the filter. It is claimed that the same notion applies to digital filters.  
 
Section 22 is the first of two sections devoted to what we call the Digital Fourier Transform X'(ω). This 
transform is stated above (22.6) and is compared side-by-side with the Fourier Integral Transform X(ω). 
The time domain digital convolution sum a = b * c of (22.6) (a digital filter) is found to have the simple 
diagonalized appearance A'(ω)  =  B'(ω)C'(ω) in the ω domain.  
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Section 23 concludes the presentation of the Digital Fourier Transform X'(ω).  
 Subsection (a) shows that the relation between X'(ω) and X(ω) is X'(ω) = Σm X(ω- mω1), which is 
exactly the form of main spectrum plus image spectra which occurred in both Sections 20 and 21. We 
then realize that the pulse train spectrum of Section 20 is just X(ω) = Y'(ω), where Y'(ω) is the Digital 
Fourier Transform of the signal y(t) whose samples yn are the amplitudes of an amplitude-modulated 
pulse train whose pulses are delta functions. Similarly, we realize that A(ω) = B'(ω)C(ω) is a compact 
way to write the frequency domain digital filter equation where B'(ω) has image spectra.  
 Subsection (b) contains a "summary box" for the Digital Fourier Transform.  
 
Section 24 shows that the Digital Fourier Transform is really the Z Transform in disguise. Specifically, 
the Z Transform X"(z) = (1/Δt) X'(ω) where z ≡ eiωΔt. This last equation defines an analytic mapping 
between the ω plane and the z plane, as shown in Fig 24.1, which removes the redundancy present in the 
ω-plane picture. Various aspects of the Z Transform are then considered:  
 Subsection (a) states the digital convolution theorem in terms of the Z Transform.  
 Subsection (b) discusses the digital "unit impulse" signal in Z Transform notation.  
 Subsection (c) expresses time translation in Z Transform language, and here appears the famous 
notion that when a time domain signal is delayed one sample period, its Z Transform is multiplied by z-1.  
 Subsection (d) addresses the notion of a digital time derivative and its Z Transform.  
 Subsection (e) uses this derivative idea to analyze a digital RC filter.  The impulse response of such a 
filter is compared with that of the analog RC filter studied back in Section 4. The responses are shown to 
be the same in the limit Δt→0.  
 Subsection (f) considers a general polynomial ratio form for a digital filter transfer function H"(z). It 
is shown that, in a certain class of cases, the absence of (non-zero) poles in this ratio results in a filter 
whose impulse response decays in a finite amount of digital time. Conversely, the presence of such poles 
results in a never-ending impulse response. These are the FIR and IIR filters and it is shown exactly how 
these are represented in z space and the time domain, where these filters are implemented with registers, 
constant multipliers and adders. When H"(z) has poles, the filter is IIR and has feedback. When H"(z) has 
no poles, the filter is FIR and has no feedback. [ FIR/IIR mean Finite/Infinite Impulse Response]  
 Subsection (g) revisits the digital RC filter considered in (e), and draws the z domain circuit in the 
standard IIR form Fig 24.7. An improved version of the digital RC filter is then trivially obtained.  
 Subsection (h) very briefly connects the idea of FIR and IIR filters with polynomial multipliers and 
dividers. Such circuits appear in scramblers and cyclic code error detection and correction algorithms.  
 Subsection (i) presents a "summary box" for the Z Transform 
 
Section 25 considers the amplitude-modulated pulse train x(t) = Σn yn xpulse(t -tn) with an arbitrary pulse 
shape. It is shown that the Fourier Transform spectrum of such a pulse train is X(ω) = Xpulse(ω) Y"(z) 
where Xpulse(ω) is the Fourier Transform spectrum of the pulse, while Y"(z) is the Z Transform of the 
sequence of pulse amplitudes yn, where Y"(z) = (1/Δt) Y'(ω). A summary box appears as equation (25.4).  
 Example 1 is a specific pulse train having a short sequence of amplitudes yn with a box-shaped pulse. 
The Digital Fourier Transform |Y'(ω)|  is plotted using Maple, then |Xpulse(ω)| and |X(ω)| are plotted as 
well. The amplitudes yn are explicitly recovered from the Digital Fourier Transform inversion formula, 
and the entire pulse train x(t) is explicitly recovered from the computed X(ω) using (1.2). This Example 
shows that the Digital Fourier Transform is more appropriate for making frequency domain plots than the 
Z Transform and really does have a role to play in digital signal analysis.  
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 Example 2 considers a pulse train having just a single box pulse of amplitude y0 at t = 0. The formula 
Y'(ω) = Σm Y(ω- mω1) is examined in light of the fact that Y'(ω) = y0T1 = a constant. We find an unusual 
sum rule for the sinc function which states that Σm sinc[π(x-m)] =  1 for any real value of x, and this result 
is verified using an obscure summation formula found in Gradshteyn and Ryzhik.  
 
Section 26 considers a yn amplitude-modulated pulse train whose box-shaped pulses fill only a portion τ 
of the sample time T1 , the so called "aperture" of a D/A converter. It is shown that for any finite aperture 
size the D/A converter output pulse train spectrum X(ω) differs from the desired signal spectrum Y(ω) not 
just in terms of image spectra (which can be filtered away), but also due to a sinc function distortion of 
the spectrum:  X(ω) ~ sinc(ωτ/2)Y(ω). This sinc distortion must be compensated by implementation of a 
"sine x over x" filter somewhere in the system, sometimes in an analog post-filter.  
 
Section 27 gives a derivation of yet another transform, the Discrete Fourier Transform or DTF. The new 
feature here is that the pulse xpulse(t) used to create a pulse train is approximated by a sequence of N 
digital samples. Up to this point, our pulse trains have always been constructed from analog xpulse(t) 
functions having discrete amplitudes yn.  
 Subsection (a) first reviews the Fourier Series Transform for an infinite simple pulse train built from 
analog pulses, x(t) = Σn xpulse(t-mT1). When this pulse train is considered only at discrete times tn where 
there are N values of tn within each T1 period, we end up with what we call the Discrete Fourier 
Transform of a Simple Pulse Train where the infinite set of Fourier Series cm coefficients are replaced 
with a set of c'm coefficients (the DFT coefficients) which have the property c'm+N = c'm, which means the 
sequence of c'm coefficients is periodic and contains only N distinct values. The two halves of this pulse 
train transform are given in equations (27.9) and (27.11),  
 

 c'm  ≡  (1/N) ∑
n = -∞

∞
  xpulse(tn) e-imn(2π/N) .  projection = transform   (27.9) 

 x(tn)  = ∑
m = 0

N-1
  c'm e+imn(2π/N)  .    expansion = inverse transform   (27.11) 

 
 Subsection (b) is a proof that the above DFT transform is correct. In this brute-force proof, a rather 
strange identity is required which is obtained in Appendix B. A summary box for the Discrete Fourier 
Transform of a Simple Pulse Train is then given as (27.16).  
 Subsection (c) shows how the results of subsection (a) may be specialized to describe the Discrete 
Fourier Transform is a signal which is a single digitized pulse having N samples xn and time duration T1. 
This results in the traditional form of the Discrete Fourier Transform as summarized in box (27.21). 
Allowing for an arbitrary convention factor A, this DFT can be stated as 
 

 c'm  ≡  (A/N) ∑
n = 0

N-1
  xn e-imn(2π/N)    m = 0,1...N-1      projection = transform 

 xn  = (1/A) ∑
m = 0

N-1
  c'm e+imn(2π/N) n = 0,1,...N-1      expansion = inverse transform (27.22) 
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Commonly appearing values of A are 1, N and N  .  
 Subsection (d) provides a graphical view of the DFT situation for a pulse train. One can consider the 
N pulse sample values as a vector xpulse and the N coefficients as another vector c', and these vectors are 
then related by an NxN symmetric matrix --  just another way to think about the above transform.  
____________________________________________________________________________________ 
 
Chapter 4: Some Practical Topics (18 p) 
 
Chapter 4 shows that symmetric FIR filters have linear phase and thus constant group delay. A specific 
brick wall digital filter is designed and then later used as an oversampling interpolation filter in the design 
of a D/A converter output section. This system is then simulated with a simple Maple program.  
 
Section 28 shows that FIR filters have linear phase and thus constant group delay if the filter coefficients 
are symmetric. The result is demonstrated by two different methods.  
 
Section 29 describes a specific design for a digital brick-wall filter with a 4x clock rate. A hardware 
implementation is shown in some detail, and the filter spectrum is computed and plotted. It is shown how 
101 taps gives a better brick wall than 21 taps, though both exhibit the Gibbs phenomenon.  
 
Section 30 considers a set of increasingly complicated D/A converter output section designs.  
 Subsection (a) describes a very simple D/A converter output section. A certain specific digital signal 
yn is assumed in Fig 30.1. Both the Digital Fourier Transform spectrum |Y'(ω)| and Fourier Transform 
spectrum |X(ω)| of the stepwise analog output are computed and plotted. The first plot shows the expected 
image spectra, while the second shows a large sinc distortion of the output with the image spectra damped 
down significantly.  
 Subsection (b) clocks the D/A converter of the previous design at a 4x rate. This has no effect on the 
analog output waveform, but allows for a reinterpretation of the output in terms of a 4x rate analysis. This 
section is mainly an exercise in computing the output spectrum two different ways.  
 Subsection (c) adds a zero-stuffing input section to the converter design, which results in a new 
sampled signal with a 25% aperture as shown in Fig 30.8. Both  |Y'(ω)| and  |X(ω)| are computed for this 
new signal. The sinc distortion is much reduced, but several image spectra appear in the output spectrum.  
 Subsection (d) adds the 4x-rate brick-wall filter of Section 29 between the zero-stuffing input circuit 
and the D/A converter output circuit. The new X(ω) spectrum of the output shows the desirable features 
of a reduced sinc distortion and image spectra rejection. The system is then simulated with simple Maple 
code and the time-domain output plotted first for a 21-tap filter and then for a 41-tap filter. It is seen why 
this kind of filter is called an interpolation filter and an alias-rejection filter.  
____________________________________________________________________________________ 
 
Chapter 5: Some Theoretical Topics (10 p)  
 
Chapter 5 contains only Section 31 which explores the subject of dispersion relations for the spectral 
function X(ω) and for other related functions treated as analytic functions of a complex variable.  
 Subsection (a) derives an integral equation (32.1) which X(ω) must satisfy if X(ω) is analytic in the 
upper half ω plane. The integral in this equation is a "principle value" integral which has a tick mark. This 
type of integral is described more in Appendix C. 
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 Subsection (b) derives a similar equation (31.3) for X(ω) being analytic in the lower half ω plane. 
These two equations are then written in (31.5) as one equation with a parameter σ = ±1 to distinguish the 
cases. The RC filter spectrum G(ω) found in Section 4 (b) is shown to satisfy this integral equation.  
 Subsection (c) rewrites the dispersion relation in terms of the real and imaginary parts of X(ω), 
shown in (31.8), so now there are two equations. In the case that X(ω) is associated with a real signal x(t) 
the negative frequency half of the integral can be folded into the positive half to give a new form (31.9) 
which is associated with the names Kramers and Kronig.  
 Subsection (d) shows how the dispersion relations are also valid for γ(ω) where X(ω) = e-γ(ω), with 
certain assumptions. The real and imaginary parts of  γ(ω) = α(ω) + i β(ω) are the attenuation and phase of 
the spectrum (or transfer function) X(ω). When those assumptions are met, such a filter is a minimal 
phase filter. It is shown that the dispersion relations mix together the attenuation and phase, so neither can 
be set independently of the other.  
 Subsection (e) demonstrates that a minimal phase filter has approximate linear phase in any region of 
ω that is far away from regions where the attenuation α(ω) significantly varies.  
 Subsection (f) applies this idea to a zero resistance coaxial cable and argues that such a cable has 
linear phase up to infrared frequencies. Linear phase means constant group delay which means the cable 
is non-dispersive. Real cables of course don't have zero resistance and exhibit skin effect.  
 Subsection (g) rewrites the dispersion relations in terms of the Hilbert Transform. The dispersion 
relation becomes roughly the statement that X(ω) must be ±i times its own Hilbert Transform. It is 
emphasized that the dispersion relation is only a condition on X(ω) and does not fully determine X(ω). 
___________________________________________________________________________ 
 
Chapter 6:  Power in Pulse Trains (90 p) 
 
Chapter 6 derives expressions for the energy and power, and the spectral energy and power densities of an 
amplitude-modulated pulse train. This work is carried out with a moderate amount of mathematical rigor. 
Correlation and autocorrelation are mentioned.  The notion of a statistical pulse train is presented and the 
spectral power density of such pulse trains is established. These results are then applied to various 
uncorrelated standard line codes including NRZ, RZ and Manchester. Two examples of correlated pulse 
trains are then treated -- AMI and Change/Hold  -- and the latter is then used to get results for the NRZI 
line code.  
 
Section 32 introduces the autocorrelation function rx(t) of function x(t) and discusses energy and power.  
 Subsection (a) computes rx(t) for a square pulse.  
 Subsection (b) defines quantities E, p(t) and E(ω) which are the total energy, instantaneous power, 
and spectral energy density of a pulse train.  
 Subsection (c) shows that the Fourier Integral Transform Rx(ω) of rx(t) is directly related to E(ω), a 
fact known as the Wiener-Khintchine relation.  
 Subsection (d) verifies this theorem for the square pulse.  
 Subsection (e) digresses on the subject of cross-correlation and relates this to auto-correlation.  
  
Section 33 computes the power spectral density of a simple pulse train with arbitrary xpulse(t).  
 Subsection (a) computes |X(ω)|2 for an infinite simple pulse train.  
 Subsection (b) repeats this calculation for a finite simple pulse train.  
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 Subsection (c) defines the spectral power density P(ω) of a pulse train and displays the result for the 
infinite and finite pulse trains based on the |X(ω)|2 computations of the previous two subsections. As 
expected, the infinite pulse train has a discrete power spectrum while the finite one has a continuous 
spectrum. In the infinite case, P(ω) is related to the Fourier Series coefficients cm , am and bm.  
 Subsection (d) defines the average power P of a pulse train and relates that to cm , am and bm .  
 
Section 34 computes the spectral power density of a general (PAM) pulse train with arbitrary xpulse(t).  
 Subsection (a) gathers up in a summary box a set of energy and power facts already derived which 
apply to general pulse trains, not just simple ones.  
 Subsection (b) computes the spectral energy density E(ω) and power density P(ω) for a general pulse 
train. The results are stated for infinite pulse trains, with the understanding that all sums are replaced by 
finite sums for finite pulse trains.  
 Subsection (c) uses two methods to compute the spectrum X(ω) and power spectral density P(ω) of a 
general pulse train in which the amplitudes have the form A,B,A,B.... with arbitrary xpulse(t). The first 
method involves a brute force calculation of the result for a finite pulse train, and then takes the limit 
N→∞ to obtain the result for an infinite pulse train. The second method treats the pair of pulses A,B as a 
single pulse of period 2T1 and obtains the same results using a Fourier Series analysis. The results are 
then applied to a short catalog of standard cases (such as A = 1, B = 0) and displayed in Figures 34.2 
through 34.9. At the very end results are stated for repeat sequences A,B,C and A0,A1....AM-1. The 
general case is treated in Appendix F. 
 
Section 35 treats statistical pulse trains in which the amplitudes take "random" values. For example, a 
square wave pulse train might have probability p for amplitude 1 and 1-p for amplitude 0.  
 Subsection (a) defines the notion of a statistical pulse train in terms of an ensemble of pulse trains 
which have random variables Yn associated with each position in the pulse train. The horizontal and 
vertical averages <>1 and <> are defined with a simple example. 
 Subsection (b) shows the region in (m,s) space for which ymym+s is non-zero for a finite pulse train, 
and states the corresponding restriction on the autocorrelation sequence rs.  
 Subsection (c) expresses the spectral power density P(ω) in a variety of ways first for infinite pulse 
trains and then for finite ones. These two groups of equations are repeated below with modifications. 
 Subsection (d) takes the ensemble average of the equation groups of subsection (c).  
 Subsection (e) shows how the two equation groups simplify if stationarity is assumed.  
 Subsection (f) shows how the two equation groups further simplify if stationarity and statistical 
independence is assumed.  
 Subsection (g) comments on distinctions between the <>1 and <>  averages. It then shows that for a 
large ensemble of infinite pulse trains one has <>1 =  <>, so the distinction between the two kinds of 
averages goes away. They are approximately equal for very long pulse trains.  
 Subsection (h) first discusses two general methods for computing the spectral power density P(ω). 
These are the autocorrelation method and the double-sum method. It is then noted that for a very large 
ensemble of very long pulse trains, <P(ω)> = P(ω). Finally, various Facts about an infinite uncorrelated 
pulse train (stationary and independent) are collected. The Facts are then applied to pulse trains whose 
amplitudes take values in the set {A,B}.  
 Subsection (i) displays a summary box for finite and infinite uncorrelated statistical pulse trains and 
then provides a simple example.  
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 Subsection (j) presents a numerical simulation of an ensemble of random pulse trains. A simple 
Maple program computes and plots the average spectral power density <P(ω)> of the ensemble, and one 
clearly sees the continuous and discrete pieces of the spectrum. <X(ω)> is also computed. 
 Subsection (k) considers and then resolves an interesting paradox:  the simulation shows a power 
spectrum <P(ω)> having a continuous component, whereas the simulated <X(ω)> has no continuous 
component. This seems strange since P(ω) ~ |X(ω)|2.  
  Subsection (l) discusses the role which the autocorrelation function/sequence has played in this 
document's presentations. 
 
Section 36 computes the spectral power density for several standard uncorrelated line codes. This 
includes unipolar and bipolar versions of the NRZ and RZ lines codes,  and the Manchester line code. For 
each line code the spectrum is stated and plotted, and the way power partitions into AC (lines and 
continuous) and DC components is reviewed. Eye patterns and ISI receive a passing comment.  
 
Section 37 computes the spectral power density for the Alternate Mark Inversion (AMI) line code. In this 
line code, the locations in the pulse train are correlated with each other which makes the calculation of 
<ymyn> more difficult -- one cannot claim <ymyn> = <ym><yn> . The autocorrelation sequence is 
calculated, plotted, and is then used to compute the spectral power density P(ω). Results are summarized 
in the last subsection, the spectrum is plotted, and various limits of the spectrum are explored.  
 
Section 38 repeats the previous section for what we call the Change/Hold line code. Again there is 
correlation among the amplitudes yn. The autocorrelation sequence is calculated, plotted, and is then used 
to compute the spectral power density P(ω). Results are summarized in the last subsection, the spectrum 
is plotted, and various limits of the spectrum are explored. 
 
____________________________________________________________________________________ 
 
Appendix A: Delta Function Technology (19 p) 
 
Appendix A discusses "delta functions" at a someone deeper and more practical level than one commonly 
finds in texts and on the web. Delta function models are constructed and many mathematical identities are 
developed which find use in the main text. It seemed best to isolate this material into an appendix rather 
than derive its results in line.  
 The opening text gives a very minimalist outline of "distribution theory", with a mention of the 
meaning of "symbolic functions" like the delta function.  
 Subsection (a) develops four different "models" (δ1 through δ4) for the delta function. Each model is 
a sequence of functions which approaches the true δ in the limit of some parameter. As part of this 
development, two different proofs are given for equation (2.1),  
 

   ∫
-∞

 ∞ dx e±ikx = 2πδ(k)  .        (2.1) 

 
 Subsection (b) develops models δ5, δ6 and δ7 for what we call "periodic delta functions".  
 Subsection (c) derives the following two "exponential sum rules" 
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 ∑
n = -∞

∞
  eink  = ∑

m = -∞

∞
  2πδ(k - 2πm)     -∞  < k < ∞  (13.2) 

 ∑
n = -N

N
   eink   = 2π {  

sin[(N+1/2)k]
 2π sin(k/2)   }   ≡  2π δ5(k,N)   -∞  < k < ∞  (13.3) 

 
and it is shown how the first is a limit of the second. Equation (13.2) is then used to derive the Poisson 
Sum Formula.  Both sum rules are used many times in the main text.  
 Subsection (d) notes that the number δ(0) is undefined in distribution theory, but is meaningful for a 
specific delta function model. It is just a notation to allow us to handle certain infinite sums that occur 
many times in the main text. A related notion is called "undoing the limit", or "backing off". For example, 
one can undo the limit of (13.2) above to arrive at (13.3) in which the right side is a perfectly normal 
function. Sometimes it is necessary to undo the limit in this way, do some calculations, and then take the 
limit N→∞ again.  
 Subsection (e) considers the delta function sifting property (2.2) and pays particular attention to what 
happens at the two integration endpoints. A special notation Θ(a ≤ x ≤ b)  is introduced to incorporate the 
endpoint effects. Several properties of the Θ "function" are stated.  
 Subsection (f) addresses the tricky subject of the product of two delta functions of the same variable. 
This concept is undefined in distribution theory, but one must face such products when computing objects 
like the spectral power density of a pulse train:  the spectrum includes delta functions, and the power 
density is proportional to the spectrum squared. The solution as mentioned just above is to back off from 
the N=∞ limit, figure out what is happening, and then resume the limit again. It is in this process that the 
delta function models δ5 and δ6 find their use.  
____________________________________________________________________________________ 
 
Appendix B: Derivation of a Certain Identity (2 p) 
 
Appendix B derives this rather obscure identity, where N and s are arbitrary integers with N > 0,  
 

    ∑
m = 0

N-1
  e+ims(2π/N)  =  N ∑

m = -∞

∞
  δs,mN       (B.1) 

____________________________________________________________________________________ 
 
Appendix C: The Fourier Transform and its relation to the Hilbert Transform (17 p)  
  
Appendix C further develops Fourier Integral Transform theory beyond the treatment of the main text. 
Instead of using the notation f(t) and F(ω), here we use f(t) and f^(ω).  
 Subsection (a) introduces this ^ notation for the Fourier transform and allows for a general constant k 
in the transform definition to allow comparison of results with sources using other conventions. In this 
new notation, some "Facts" are derived, such as  
 
 [f(-u)]^(-ω)  = f^(ω)   f^-1(u)  = (1/2πk2) f^(-u)  f^^(t) = 2πk2 f(-t)  . 
 
An operator notation is introduced which is similar to that commonly used for the Laplace Transform.  
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 Subsection (b) introduces the notion of a Cauchy Principle Value integral with a preliminary look at 

its associated symbolic function pf(x). We use the tick notation ∫-- for such an integral.  

 Subsection (c) computes the "regular" Fourier transform of the function f(u) = 1/u,  which is not quite 
as simple as it seems. It is shown that (1/u)^(ω) = -iπk sgn(ω) where sgn(ω) = 2θ(ω) – 1 and where θ(ω) is 
the Heaviside step function. The inverse Fourier transform is then done to verify that the original function 
1/u is recovered. A directly related result is [sgn(ω)]^(t) =  -2ik(1/t).  
 Subsection (d) gives a derivation of this fact involving complex integration (ω is real) ,  

 limε→0 
1

ω ∓ iε  = pf(1/ω) ± iπδ(ω)        (C.22) 

which for want of a better name we call The Pole Avoidance Rule. A certain contour avoids hitting a pole 
by deflecting one way or the other around the pole. Along the way, pf(x) is defined as a symbolic 
function.  
 Subsection (e) computes the Fourier transform of the function limε→0 [1/(u±iε)] which seems very 

close to the function 1/u explored in subsection (c). One finds that (
1

u±iε )^(ω)  = ∓ 2πik θ(±ω). The 

original function is then recovered using the inverse Fourier transform. A directly related result is the fact 

that [θ(±t)]^(ω) = k pf( 
1

±iω ) + π k δ(ω)  (Fourier transform of the Heaviside step function).  

 Subsection (f) then computes [θ(u)]^(ω) using the "generalized" Fourier transform (in which the 

recovery contour is vertically shifted). The result is [θ(u)]^(ω) = 
k
iω .  

 Subsection (g) summarizes all the examples considered in this appendix.  
 Subsection (h) defines the Hilbert Transform fh(t) of a function f(t). This transform has an intimate 
connection with the Fourier Transform which is laid out in a series of unusual facts such as  
 

  [fh]^(ω) = k-1 ( 
1
πt  )^(ω)  f^(ω)   = -i sgn(ω) f^(ω)   fhh(t)  = -f(t) . 

 
The inversion formula for the Hilbert transform is derived and the transform is then computed for some 
simple examples. The Hilbert Transform appears in the dispersion relations of Section 31 (g).  
____________________________________________________________________________________ 
 
Appendix D: Calculation of a Sum which appears in (35.17) (5 p) 
 
This identity is derived,  
 

 ∑
s = -2N

2N
   

2N+1 - |s|
2N+1   e±iks   =  

1
2N+1  

sin2[(N+1/2)k]
 sin2(k/2)  //  = 2πδ6(k,N) of (A.20)  (D.1) 

 
The sum appears in the power spectrum of a finite pulse train when that spectrum is computed by the 
autocorrelation method.  
____________________________________________________________________________________ 
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Appendix E: Table of Transforms (4 p) 
 
Lists all transform pairs which appear in this document and shows how they are related.  
 
____________________________________________________________________________________ 
 
Appendix F:  The Spectrum and Power Density for Repeated-Sequence Pulse Trains (20 p) 
 
For infinite pulse trains composed of repeats of some length-P subsequence:  
 Subsection (a) computes the spectrum X(ω) in (F.12) 
 Subsection (b) computes the spectral power density P(ω) in (F.23) in terms of  | YP"(z) |2.  
 Subsection (c) computes <P(ω)> for an ensemble of pulse trains which respect the special condition 
 
  <ym* yn>  = α for m ≠ n 
  <ym* yn>  = β for m = n         (F.25) 
 
The result for  <P(ω)> is stated in (F.33) in several different forms.  
 Subsection (d) takes the P→∞ limit of the subsection (c) result for <P(ω)>. 
 Subsection (e) computes P(ω) for a single pulse train which respects the special condition 
 
  <ymyn>1  = α for m ≠ n + NP    N = any integer  
  <ymyn>1  = β for m = n  + NP        (F.43) 
 
where <ymyn>1 is a horizontal average across the single sequence (autocorrelation). The result for P(ω) is 
stated in (F.52).  It is noted that the results for <P(ω)> of subsection (c) and P(ω) of subsection (e) are 
exactly the same in terms of their respectively defined α and β constants and the reason is given.  
 Subsection (f) summarizes the power spectrum and its conditions as Fact (F.54). A graphical 
representation is drawn for the spectrum in general, and for a box pulse in particular. It is shown that  the 
MLS sequence is a candidate for application of this Fact, and the MLS spectrum is stated.  
 Subsection (g) treats the P = 2 repeated subsequence A,B using the general formulas of subsections 
(a) and (b)  
____________________________________________________________________________________ 
 
Appendix G:  Random Variables, Probability Theory and Pulse Train Amplitudes (24 p) 
 
 Subsection (a) provides an opening definition of a "random variable" as being a parameter associated 
with a probability distribution. The terms experiment, outcome, sample space and event are defined and 
two simple classic experiments considered:  rolling a die, and spinning a spinner. The corresponding pdf 
and pmf distributions are discussed.  
 Subsection (b) refines the definition of "random variable" as a mapping from the sample space to the 
real numbers, and the coin toss experiment is used as an example. Drawings show examples of discrete 
and continuous sample spaces and the random variable mappings.  
 Subsection (c) contains a brief review of basic probability theory with an emphasis on notation. The 
notions of statistical independence, correlation and normalization are discussed. Some Math Lemmas are 
presented relating the ordering of terms in a sum Σx,y in the context of some function z = f(x,y) by first 
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summing over a surface of constant z, then over different z values, so Σx,y  = Σz Σsurface(z), These 
lemmas are needed in the following discussion of random variables defined as functions of other random 
variables. After this, the usual suspects of probability theory are rolled out for inspection:  expected 
values, mean, covariance, variance, standard deviation and correlation.  
 Subsection (d) treats "ensemble experiments" such as rolling N loaded dice, and a transition is then 
made to the analysis of random variables associated with an ensemble of people.  
 Subsection (e) treats the rolling of two weighted, magnetically interacting dice, after which special 
cases are considered.  
 Subsection (f) gives examples of the computation of probability mass density functions from 
experimental data.  
 Subsection (g) applies the notions of random variables and probability theory to the sequences which 
are the amplitudes of pulse trains.  
____________________________________________________________________________________ 
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